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ABSTRACT 

Water is one of the most essential natural resources not only for human survival but also for 

socio-economic development of a country.  The spatial and temporal variation of its 

availability has necessitated the utilization of available water more efficiently and effectively.  

Surface water reservoirs play significant role in overcoming this problem apart from serving 

various purposes like irrigation, hydropower, flood control, industrial and domestic water 

supply, navigation, etc.  The intra basin water sharing in a multi-reservoir system forces the 

water resources planners to have an integrated operation of multi-reservoir system rather than 

operating them as a single reservoir system.  Thus, optimizing the operations of a multi-

reservoir system for an integrated operation is gaining importance, especially in developing 

countries in India.  Optimizing the operations of a multi-reservoir for various purposes 

requires systematic study.  Over the decades, several conventional optimization techniques 

had been developed and applied for the optimization of complex water resources system.  

These include techniques such as linear programming (LP), dynamic programming (DP), non-

linear programming (NLP), goal programming, etc.  However, these conventional techniques 

have their own advantages and disadvantages.  

Recently, evolutionary algorithm (EA) based soft computing techniques have been applied to 

overcome the drawbacks of conventional techniques in optimizing complex water resources 

systems.  These techniques include genetic algorithm (GA), differential evolution algorithm 

(DE), ant colony optimization (ACO), particle swarm optimization (PSO) and many more.  

The major difference between the conventional optimization techniques and soft computing is 

that in the former case, the optimal solution is derived where as in the soft computing 

techniques; it is searched from a randomly generated population of possible solutions.  Thus, 

EAs searches the optimal solution from the randomly generated initial population and attains 

the global optimum over the generation.  However, these EAs results in premature 

convergence and slower iteration to reach global optimal solution for problems having 

complex hard bound constraints, when the initial population is not so good.  Recently, chaos 

algorithm has been used by researchers to overcome these problems and to enhance the search 

in EAs.    
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In the present study, the EAs such as GA and DE are coupled with chaos to enhance the 

search and applied for optimizing complex multi-reservoir systems having hard bound 

constraints.  The chaos algorithm is used to generate initial population and also in other steps 

of evolutionary optimization techniques to enhance the search and increase the convergence 

rate.  The proposed techniques are applied for both single and multi-objective optimization of 

complex multi-reservoir systems, namely, Kukadi Irrigation Project (KIP) and Koyna Hydro-

Electric Project (KHEP). 

The KIP is a complex multi-reservoir irrigation system with five reservoirs is considered as a 

case study for multi-objective optimization of a multi-reservoir system.  Among five 

reservoirs in the system, four upstream reservoirs are in parallel and one is in series at the 

downstream.  In order to meet the demand at the downstream reservoir, water is being 

transferred from the upstream reservoir through rivers and canals.  Thus, the complexity of 

the system is to find the optimal quantity of water transfer to the downstream reservoir at 

appropriate time.  Hence, in this study, an optimal cropping pattern is derived for the 

sustainable integrated operation of KIP multi-reservoir system.  The behaviour of the multiple 

reservoirs in the KIP is assessed using a simulation model and the performance is evaluated 

using indices such as reliability, resilience and vulnerability.  An optimal crop planning model 

is developed with the objective of maximizing the net benefits and maximizing the crop 

production.  Initially, a sustainable crop plan is derived for the KIP using MOFLP showed a 

satisfaction level of 0.46 for the integrated operation of multi-reservoir system with an 

irrigation intensity of 102.18%.  The same model is solved using chaotic non-dominated 

genetic algorithm-II (CNSGA-II) and chaotic multi-objective differential evolution algorithm 

(CMODE).  The parameters of the multi-objective evolutionary algorithms are fixed based on 

sensitivity analysis.  On comparing all the techniques, it is found that CMODE has resulted in 

slightly higher net benefits of Rs. 1921.77 Million ($ 31.96 Million) and crop production of 

1201.55 thousand tonnes.  CMODE resulted in a crop area of 88678.46 ha during Kharif and 

66562.98 ha during Rabi with an irrigation intensity of 106.29%.  It is also found that 

CMODE resulted in optimal intra basin water transfer both spatially and temporally compared 

to MOFLP.  The simulation of optimal results showed that CMODE polices performed better 

for longer run with less deficits compared to MOFLP policies. 

The KHEP is one of the major hydropower projects in India and is considered as a case study 

of single objective optimization.  It has four powerhouses, among which three are in the 
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Western side and one is at the Eastern side, through which irrigation releases are made.  The 

complexity of the system is that the power releases (towards Western side) and irrigation 

releases (towards Eastern side) are in the opposite direction and cannot be complemented due 

to the topology.  There is a need to optimize the operation of KHEP such that the power 

production and irrigation demands are met satisfactorily.  Hence in this study, the KHEP 

operations are optimized with the objective of maximizing the hydropower production.  

Initially, the behaviour of the KHEP is assessed using a simulation model for various cases 

based on the duration of operation of hydropower plants.  The statistical performance 

indicators such as reliability, resilience and vulnerability are used to evaluate the performance 

of the system.  An optimization model is developed with the objective of maximising the 

hydropower production subject to satisfying the irrigation demands and other constraints.  

Thus, irrigation demands are given higher priority by making it as a separate constraint.  The 

developed optimization model is solved using both conventional NLP and EAs coupled with 

chaos for four different operating policies.  On comparing with NLP, simple genetic algorithm 

and differential evolution algorithm, it is found that hybrid chaotic differential evolution 

(HCDE) algorithm and hybrid chaotic genetic algorithm (HCGA) resulted better.  Among the 

four policies assessed, the Policy 1 has resulted in maximum power production of 5195.39 × 

106 kWh from HCDE.  However, this Policy 1 has not resulted in irrigation release.  The 

Policy 3 has resulted 3950.93 × 106 kWh hydropower is a feasible option, since it satisfied the 

monthly demand as well as produced 22% more hydropower than Policy 4.  The 

performances of Policy 3 are evaluated using a simulation model for longer run.  The 

simulation results showed that Policy 3 satisfied the irrigation demand in most of the time 

period (only 8 months deficit out of 588 months) and the average annual irrigation deficit is 

only 12.63 × 106 m3.   

 

Keywords: Simulation, Optimization, Evolutionary Algorithms, Chaos, Multi-reservoir 

System 
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Chapter 1 

Introduction 

1.1 General 

Water is one of the most essential natural resources for human survival.  Globally, only 2.7% 

of the total water available on the earth is fresh, out of which about 75.2% lies frozen in Polar 

regions and another 22.6% is present as groundwater (Jain et al., 2007).  The rest is available 

in lakes, rivers, atmosphere, and soil moisture.  Thus, the available fresh water for human 

consumption is a very small proportion, which is in rivers and lakes and also rapidly 

diminishing over the year (Kumar et al., 2005).  Moreover, this available water significantly 

varies in spatially and temporally causing optimal allocation problems to water resources 

managers.  Surface water reservoirs play a significant role in supplying water for various 

purposes and to some extent solves the problem of spatial and temporal variation of water 

availability (Simonovic, 1992).  The various purposes served by the surface water reservoirs 

are irrigation, hydropower, industrial and domestic water supply, flood control, navigation, 

recreation, etc.  In order to achieve maximum benefits, these reservoirs are needed to be 

operated in such a way that the available water is allocated optimally for various purposes.  

However, optimal operation of a reservoir is a challenging task for water resources planners 

and managers as the demand increases day-by-day from various sectors.  This necessitated the 

need to operate the surface water resources optimally by allocating the available water for 

various inter-sectoral demands.   
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1.2 Surface Water Reservoir Systems 

A surface water reservoir is a storage structure that stores water during the periods of excess 

inflow (monsoon season) in order to best meet the demands during the periods of low flow 

(non-monsoon season) (Vedula and Mujumdar, 2005).  The state of the surface water 

reservoir system in a period is generally defined by the reservoir storage at the beginning of a 

period and the inflow into the reservoir during that period.  The operating policy of a reservoir 

is a sequence of release decisions during the operational periods (such as months) specified as 

a function of the state of the system.  The optimal reservoir operation policies should be 

derived such that constraints including physical characteristics of the reservoir, land and water 

availability, demands for various purposes, mass balances and other socio-economical issues 

related to a reservoir are not violated.  Thus, the decision variables are typically releases and 

end-of-period storage volumes for the reservoir operation problem (Wurbs, 1993).     

1.2.1 Issues in Surface Water Reservoir Systems 

In India, most of the reservoir operation policies are based on thumb rule and are devised long 

back.  The other criticism of these operating rules is that they are derived without 

understanding the behaviour of the system.  The ever increasing water demand for various 

purposes, and other practical and environmental constraints in constructing new reservoirs 

(Chang and Chang, 2009) necessitated the conversion of a single purpose single reservoirs 

into a multi-purpose as well as multi-reservoir system.  The conversion of single purpose to 

multi-purpose operation resulted in conflicts among various purposes and also resulted in 

dispute between different stake holders in sharing the available water.  A major conflict issue 

in the operation of reservoir systems arises when the reservoir is not capable of supplying all 

the demands (Karamouz et al., 2003).  Irrigated agriculture is the largest consumer of water 

and surface water reservoirs play a major role in supplying the irrigation water.  However, 

varying crop water requirement for multiple crops under different command area makes the 

system complex for effective crop planning.  There are some reservoirs having more 

command area and could not cater the irrigation demand on its own.  In such cases, water will 

be transferred from the upstream reservoir to supplement the demands at the downstream 

reservoir.  The conversion of single reservoir to multi-reservoir and water transfer from one 

reservoir to other reservoir makes the system operation more complicated.  Hence, an 



3 

integrated planning and operation considering all the reservoirs in the system as a component 

is required for the optimal integrated operation of a multi-reservoir system.    

1.2.2 Issues in Optimization Techniques 

Optimizing the operations of a reservoir are complex because of the uncertainty in the input 

variables, non-linear relationship between the variables, conflicting and competing multiple 

objectives, non-convexity of the problem, and discontinuity of the solution space (Loucks et 

al., 1981; Simonovic, 1992).  Thus, reservoir optimization requires a systematic study 

(Simonovic, 2009).  One of the important advancement made in systems engineering is the 

development and application of various optimization techniques to solve the complex 

problems.  The optimization techniques can be broadly classified into two categories namely 

(i) conventional techniques and (ii) artificial intelligence based soft computing techniques.  

The conventional techniques are linear programming (LP), non-linear programming (NLP), 

dynamic programming (DP), and goal programming, etc.  For the past several decades these 

techniques have been widely used in reservoir optimization (Yeh, 1985).  However, these 

conventional techniques have certain drawbacks in solving complex large scale multi-purpose 

multi-reservoir systems with hard bound constraints.  Some of the complexities of 

conventional techniques are: 

1. The LP is used to solve problems having linear objectives with linear constraints.  

However, in real life most of the water resources systems are non-linear in nature.  

Sometimes, piecewise linear approximations have been used for non-linear functions; 

however linearization increases the problem size extensively and also fails to guarantee 

the global optimal solution (Labadie, 2004).  

2. The gradient based NLP techniques are applied for non-linear objective functions and 

constraints, especially for hydropower optimization problems.  However, the complexity 

increases with the degree of non-linearity.  They also often get trapped to local optima for 

highly complex hard bound non-convex problems. 

3. The DP is widely seen as a suitable alternative for NLP techniques.  In general, the DP 

decomposes the original problem into different sub-problems (discretization of the 

variables of the model in to different states) and is solved sequentially (stages) (Bellman, 
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1957).  The accuracy of the solution in DP depends on the number of discretization of the 

states and stages.  However, the major limitation of DP is that with large number of 

discretization, the computational times increases exponentially and results in curse of 

dimensionality.  In addition, the formation of recursive equation also changes for various 

applications. 

4. The conventional optimization techniques have limitation in handling multi-objective 

optimization problems.  In conventional techniques, the multiple objectives are handled 

either by constraint method or weight method (Mays and Tung, 2002).  Both of these 

methods convert the multi-objective optimization problem into a single objective 

optimization problem to give only one optimal solution in each iteration and do not 

produce a Pareto optimal front.  To generate multiple optimal solutions and to form 

Pareto optimal front, the conventional optimization techniques need to be run for several 

times.  However, problems having multiple conflicting objectives should be considered 

simultaneously for generating true Pareto optimal front having large number of optimal 

solutions.  Hence, these conventional techniques may not be suitable for multi-objective 

problems with conflicting objectives. 

To overcome these drawbacks of applying conventional techniques in water resources, 

recently, artificial intelligence (AI) based soft computing techniques are widely used in 

optimizing water resources systems.  These AI techniques are mostly search techniques that 

search the optimal solution from a possible solution space, where as the conventional method 

derives the optimal solution.  Some of the widely used soft computing techniques are genetic 

algorithm (GA), differential evolution algorithm (DE), ant colony optimization (ACO), 

particle swarm optimization (PSO), simulated annealing (SA), etc.  The evolutionary 

algorithms (EA) that works on principle of natural genetics ‘survival of the fittest’ are GA and 

DE algorithms.  These techniques start their search from a randomly generated initial 

population of possible solutions to attain the global optimal solution over the generation.  

Hence, the results of the evolutionary algorithms mainly depend on the randomly generated 

initial population for the effective search and faster convergence.  However, it is reported that 

the simple evolutionary algorithms are slower in convergence and may results in sub-optimal 

solutions for a complex problems having hardbound constraints (Yuan et al., 2002; Chen and 

Chang, 2007; Cheng et al., 2008).  
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1.3 Motivation of the Study 

The systems engineering is a promising approach and useful for optimizing the problems 

dealing with management of scarce resources (Jain and Singh, 2003).  Fairly large number of 

conventional and soft computing techniques has been reported for the optimization of water 

resources systems.  However, the changing scenario of conversion of single purpose reservoir 

into multi-purpose and single reservoir to multi-reservoir system necessities the optimal 

planning of reservoir operation.  The water is being transferred from one reservoir to other in 

the same basin as well as to other adjacent basins to cope up the demand and to solve spatial 

variation of water availability.  In such cases, the operation of one reservoir affects the other 

reservoir and makes the system complex.  Hence, the intra basin water transfer in a multi-

reservoir requires an integrated operational planning considering all the reservoirs in the 

system.   

Many of the real life problems involve conflicting and competing objectives.  For example, 

hydropower and irrigation are conflicting objectives.  Hydropower production requires high 

head in the reservoir for effective operation and more power production whereas crop 

production demands more irrigation releases.  In some peculiar cases, hydropower and 

irrigation releases are in opposite direction in which the power releases cannot be utilized 

further.  Thus, conflict arises when the hydropower is not produced through irrigation releases 

and requires separate release which does not cater the irrigation requirements.  In such cases, 

a suitable trade-off needs to be arrived so as to satisfy both the irrigation and hydropower 

demands.  All these issues in reservoir operation, especially in developing country like India 

motivated to take up a study to optimize the operations of multi-reservoirs systems having 

intra basin water transfer. 

1.4 Scope of the Study 

Most of the reservoirs in India are still operated using the rule curves derived during the 

design of the reservoir or based on thumb rules and past experience.  Wurbs and Carriere 

(1993) reported that modifying the operational policies of a reservoir in response to changing 

conditions and increasing demand is always beneficial to the limited surface water resources.  

Optimal water resource systems planning, management, and operation is far more complex 



6 

because of the multiple interdependent physical, biochemical, ecological, social, legal and 

political (human) processes that govern the behaviour of the water resource systems (Loucks, 

1992).  In addition, many water resource systems are characterized by multiple objectives that 

often conflict and compete with one another (Chang and Chang, 2009).  However, the 

advancement in system engineering and computation made the complex water resource 

systems problems to simple.   

Several systems optimization techniques have been developed over the years and successfully 

applied for optimizing the reservoir operations.  Recently, modern heuristic search techniques 

were developed and more frequently used by the researchers for the optimisation of reservoir 

operation problems due to their ability to handle the nonlinear and non-convex characteristics 

of the reservoir operation problems (Reddy and Nagesh Kumar, 2012).  Among the heuristic 

search techniques, the genetic algorithm and differential evolution algorithm are more 

efficient and robust for reservoir operation due to their simplicity.  However, with the increase 

in the complexity of larger scale water resources system, simple search techniques results in 

premature convergence, slow iterations to reach the global optimal solution and getting stuck 

at a local optimum.  To overcome this drawback; recently, the chaos algorithm is coupled 

with evolutionary search technique (Yuan et al., 2002; Cheng et al., 2008). 

Chaos is a universal non-linear phenomenon in nature (May, 1976) and is having highly 

unstable motion of deterministic systems in finite phase space (Williams, 1997).  Some 

special characteristics of chaos are ergodicity, regularity, randomicity, and highly sensitive to 

initial condition (May, 1976).  Because of these properties, the general optimization technique 

can obtain the global optimal solution more readily and rapidly than other previously adopted 

methods (Li and Jiang, 1998; Cheng et al., 2008; Han and Lu, 2008).  Also, it can more easily 

escape from local minima than other stochastic algorithms and retain diversity in the 

population (Davendra et al., 2010a).  Cheng et al. (2008) states that a nonlinear system is said 

to be chaotic if it exhibits sensitive dependence on initial conditions and has an infinite 

number of different periodic responses.  Most of the water resources systems are non-linear 

and the modelling of the system is highly depends on the initial condition.  In addition, the 

search of evolutionary algorithms depends on initial population that are randomly generated.  

Hence, there is a scope to apply chaos algorithm not only in initial population generation but 

also in other optimization steps to enhance the search of the evolutionary algorithm for 

solving real world problem having hard bound constraints. 
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1.5 Objectives of the Study 

In view of the aforementioned problems, the broad objective of the present study is to 

formulate an optimal crop-planning model with reservoir inflow forecast information to 

implement the same to develop optimal reservoir operating rule curves using soft computing 

techniques.   

The specific objectives of the present research are: 

1. To derive optimal cropping pattern and optimal reservoir operating policies for a 

multipurpose reservoir system 

a. The irrigation requirements in the basin will be estimated using FAO Modified 

Penman method and FAO Penman – Monteith method. 

b. The optimal cropping pattern will be arrived using a Fuzzy optimization 

model. 

c. The optimal operating policies will be derived by developing a Fuzzy-Genetic 

Algorithm model. 

d. The complimentary and conflicting objectives will be evaluated using multi 

objective analysis. 

2. To predict the important input variable, namely inflow into the reservoir, Artificial 

Intelligence techniques such as ANN and Genetic Programming models will be 

developed.  

3. To compare the results obtained using soft computing techniques with that of 

conventional systems approach techniques, stochastic dynamic programming model 

and also with the field conditions.  

1.6 Organisation of the Report 

The report is organized in seven chapters in the following manner.  In the chapter 1, the 

concepts of water resources system, problems associated with reservoir system and 

optimization techniques, motivation, scope and the objectives of the study are described in 

detailed.  A comprehensive literature review depicted in Chapter 2 highlights the various 

conventional and soft computing techniques used for single and multi-objective optimization 
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of reservoir operations.  The limitations and advantages of various models reported in 

literature are also discussed in detail.  Based on the literature review, the various stages of the 

present work are given at the end of the chapter.  The Chapter 3 briefly describes the 

techniques used in the present study for the optimization of reservoir operations.  The 

concepts, steps, and working principle of genetic algorithm and differential evolution 

algorithm for both single and multi-objective optimization are given in detail.  The basis and 

characteristics of chaos technique and procedure for coupling chaos with evolutionary 

algorithm is also given.  To evaluate the described methodology in Chapter 3, it is applied to 

complex multi-reservoir systems in Maharashtra, India.  The details of the multi-reservoir 

system and their complexities are given in Chapter 4.  Single and Multi-reservoir inflow 

prediction model is given in Chapter 5.  In Chapter 6, the results of multi-objective 

optimization of multi-reservoir system is presented and discussed.  A complex multi-reservoir 

system with five reservoirs having multiple canals and water transfer among the reservoirs is 

selected for deriving optimal multi-crop planning for integrated operation.  The results from 

single objective optimization of multi-reservoir system using evolutionary algorithm coupled 

with chaos are discussed in Chapter 7.  In the single objective optimization, the proposed 

techniques are used for maximizing the hydropower production from a complex multi-

reservoir hydropower system.  The summary of the work done and the conclusion arrived 

from the present study is discussed point by point in Chapter 8.  The research contribution and 

scope for future work is also reported in Chapter 8.  The literatures referred in the report are 

given as a separate chapter followed by the awards and publications from this work.  

 



   

Chapter 2 

Literature Review 

2.1 General 

Optimal reservoir operation is needed for efficient utilization of the available water resources, 

especially for a water sharing multi-reservoir system.  Deriving an optimal operation plans for 

a multi-reservoir system is a complex process and it requires a systematic study (Loucks et 

al., 1981).  Systems analysis has emerged as one of the best tools for solving complex water 

resources planning and management problems.  Over the decades, several system 

optimization techniques have been developed and applied for solving the complex water 

resources problems.  These optimization techniques have evolved from optimal solution 

deriving technique to optimal solution searching techniques.  Most of the conventional 

methods are optimal solution deriving techniques.  These include linear programming (LP), 

non-linear programming (NLP), goal programming, dynamic programming (DP), etc.  

Recently, the optimization technique have taken diversion from solution deriving technique to 

optimal solution searching technique mostly based on bio-mimic processes (Reddy and 

Nagesh Kumar, 2012).  These techniques are classified as evolutionary algorithm (EA) based 

soft computing techniques.  Some of the most widely used soft computing techniques are 

genetic algorithm (GA), differential evolution algorithm (DE), etc.  The application of these 

techniques is very wide in water resources, especially in the optimization of complex 

reservoir operation.  Yeh (1985) presented a detailed review about the application of LP, DP, 

NLP and simulation models on reservoir operation.  Simonovic (1992) reviewed various 
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mathematical optimization and simulation models used in reservoir management and 

operations.  It was reported that new technologies like expert systems must be integrated with 

the existing simulation and optimization tools for reservoir analysis for closing the gap 

between theory and practice.  Similarly, Wurbs (1993) carried out a comprehensive review 

about various simulation and optimization models with an emphasis on practical applications.  

Later, Labadie (2004) presented a state-of-art of review on various conventional and heuristic 

technique like GA for optimal operation of multi-reservoir systems.  The various simulation, 

optimization and combined simulation-optimization models and their applications were 

reported by Rani and Moreira (2010), Fayaed et al. (2013) and Hossain and El-Shafie (2013).  

Recently, Singh (2014) reviewed various techniques used for planning and management of 

irrigation reservoir systems.  In this chapter, the review of these techniques is further extended 

based on the motivation and objectives of the present study.  This literature review is broadly 

presented in two topics based on number of objectives, single objective and multi-objective 

studies and for each topic; the review is presented technique wise.  

2.2 Single Objective Optimization 

In a single objective optimization problem, among various purposes of a reservoir, only a 

specific purpose is considered as decision variable and included in the objective for 

optimization.  Other purposes of the reservoir are mostly considered as constraints in the 

optimization problem.  

2.2.1 Conventional Methods 

The conventional optimization methods has been classified into two distinct groups, direct 

and gradient based methods (Deb, 2001).  In direct methods, only objective function and 

constraint values are used to guide the search, whereas the gradient based methods uses the 

first and/or second order derivatives of the objective function and/or constraints to guide the 

search process.  Many conventional techniques such as LP, NLP, DP, etc. had been 

successfully used for optimizing the reservoir operations with single objective.  Among these, 

LP is the simplest technique, which assumes the objectives and constraints are linear in 

nature.  The LP technique has been extensively used in water resources planning, especially 

for deriving optimal cropping pattern, system capacity expansion studies and to explore 
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various design parameters in connection with feasibility studies, where details in storage 

variation are not important (Barros et al., 2003).  The NLP technique is widely applied for 

optimizing hydropower systems (Gagnon et al., 1974; Tejada-Guibert et al., 1990), since it 

involves no approximation and uses the physically based non-linear function (Barros et al., 

2003).  NLP technique is also used for optimal cropping pattern (Paudyal and Das Gupta, 

1990), multi-purpose reservoir optimization (Sinha et al., 1999), and optimal design and 

operation of pumping stations (Moradi-Jalal et al., 2003) apart from hydropower 

optimization.  The Bellman’s (1957) dynamic programming (DP) is recognized as a suitable 

alternative to NLP and is considered as one of the powerful technique for optimization of 

water resource systems.  The DP splits a problem of ‘n’ decision variables in to ‘n’ sub-

problems having one decision variable and each sub-problem is referred to as a stage.  Thus, 

decisions are taken stage by stage, until the final results are obtained.  

All the above techniques can be solved either deterministically or stochastically.  The 

deterministic method does not consider the uncertainties and inaccuracies involved in the 

variables.  However, the real-life reservoir operation involves lot of uncertainty in inflow and 

other variables.  Hence, stochastic models were developed by researchers to overcome the 

limitations of the deterministic models.  The uncertainty can be included in model either 

implicitly or explicitly.  In an implicit model, the stochastic nature of inputs is incorporated 

through sensitivity analysis.  Optimization is performed with different scenarios of stochastic 

data to evaluate their impact on the operation policy.  In explicit stochastic modelling, the 

uncertainty is directly incorporated in to the problem using transition probabilities.  

Alternatively, the uncertainty can also be considered as chance constraint.  The chance 

constraint is converted into its deterministic equivalent using a linear decision rule and 

probability distributions.  However, these approaches can handle only the statistical 

uncertainty and not the non-statistical uncertainty namely vagueness or impreciseness present 

in the data (Mohan and Jothiprakash, 2000).  In such cases, the fuzzy set theory developed by 

Zadeh (1965) has been proved as a robust where these kinds of uncertainties can be modelled 

as fuzzy variables (Zimmermann, 1996).   Some of the application of these conventional 

techniques on reservoir optimization is discussed in the following section. 
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2.2.1.1 Linear Programming 

A linear programming (LP) problem may be defined as the problem of maximizing or 

minimizing a linear objective function subject to linear constraints.  The variables may be 

either negative or non-negative and the constraints may be equal or unequal.  Maji and Heady 

(1980) analysed the optimal cropping pattern of Mayurakshi project in India using 

deterministic and chance-constrained LP (CCLP) model.  It was reported that both the 

deterministic and CCLP models resulted in more intensive cropping pattern with more 

dependence on Rabi than Kharif crops in the region.  A LP model was formulated  by Vedula 

et al. (1986) to study the Bhadra reservoir project based on the concept of over year and 

within year storages.  The reservoir operations were evaluated by simulating thirteen different 

policies using both historic and synthetically generated monthly stream flows.  On comparing 

the results with the actual operation for 11 years, it was reported that the hydropower 

generation could be substantially increased using the derived policies without any irrigation 

deficits. 

Liang and Hsu (1994) developed a fuzzy linear programming (FLP) model for optimal 

hydroelectric generation scheduling in the Taiwan power system. The hourly loads, the hourly 

natural inflows and the cost were expressed in fuzzy set notations.  On comparing the results 

with conventional LP model, it was reported that FLP model resulted in less total cost for the 

generation schedule, since the uncertainties in load, demands and natural inflows were taken 

into account in the FLP model.  It was concluded that the FLP is very effective in obtaining 

proper hydropower generation schedules. 

Sreenivasan and Vedula (1996) developed a CCLP model for the optimal operation of a 

multi-purpose reservoir with the objective of maximizing the annual hydropower production 

while meeting the irrigation demands for a specified reliability level.  The irrigation releases 

were defined as chance constraint and converted into its deterministic equivalent using a 

linear decision rule.  The model was solved for different reliability levels with an increment of 

0.05 from 0.50.  It was reported that the maximum possible reliability for meeting the 

irrigation demand was 0.65 and the corresponding maximum annual hydropower produced by 

the bed turbine was 5.68 M kWh. 
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Mohan and Jothiprakash (2000) developed a FLP model for conjunctive use operation of Sri 

Ram Sagar Project (SRSP) in India and compared the results with classical LP model.  The 

fuzziness involved in the inflow and groundwater pumping is considered using a linear 

membership function in the FLP model.  It was reported that the fuzziness in groundwater 

pumping played a prominent role in deriving optimal crop plan with 0.78 degree of 

satisfaction.  It was reported that the increase in fuzziness increases the degree of satisfaction.  

An irrigation planning model was developed by Raju and Nagesh Kumar (2000a) using LP 

for the evaluation of irrigation development strategies of SRSP, India.  The objective of the 

model was to maximize the net benefits.  The stochastic nature of inflows was considered 

through chance constrained and the model was solved for various dependable inflows.  It was 

reported that the net benefits obtained for 75% dependable inflow level is 68.8% more than at 

90% dependable inflow level and concluded that LP is a more versatile technique for deriving 

optimal crop planning. 

A LP model was formulated by Singh et al. (2001) to derive optimal cropping pattern for the 

command area of Shahi distributory of Sharda canal command located in Bareilly, Uttar 

Pradesh, India.  The objective of the model was to maximize the net return subject to various 

physical and socio-ecological constraints.  It was reported that the model has resulted in an 

optimal crop area of 11,818 ha with a maximum net return of Rs. 185 million for 100% water 

availability. 

Sethi et al. (2002) developed a LP model for deriving optimal crop planning for a coastal river 

basin in India with the objective of maximizing the economic net returns from various crops, 

excluding the irrigation cost.  The developed model was subjected to various constraints such 

as surface and groundwater availability and their mass balance, cropping pattern restrictions, 

etc.  Upon evaluating the model for nine different exceedance probability of net irrigation 

requirements (NIR), it was reported that the optimal annual net return increases with decrease 

in the probability levels of NIR. 

A combined optimization-simulation approach was used by Mohan and Jothiprakash (2003) 

to derive the optimal cropping pattern for SRSP, India.  The optimal cropping pattern was 

derived using LP model with and without conjunctive use.  Three policies were evaluated, (i) 

irrigation with surface water only, (ii) irrigation with conjunctive use of surface and 
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groundwater, without socio-economic constraint and (iii) irrigation with conjunctive use 

operation, with socio-economic constraint.  The policies derived from the optimization model 

were evaluated using a simulation model for a longer series of inflow data.  It was reported 

that the conjunctive operation of surface and groundwater is essential in the command area. 

Moradi-Jalal et al. (2007) developed a deterministic LP model to derive optimal multi-

cropping pattern. The reservoir operations were related to release policy, water allocations 

and reservoir spills in a monthly operating time.  The objective of the study was set to 

maximize the annual benefit from the system considering the monthly water balance, water 

demand, evaporation loss and governing equations for reservoir release and operations.  It was 

reported that the variations in monthly inflow caused very little change in the optimum 

benefits of the system.  It was reported that the variable cropping patterns increased the 

benefit due to the flexibility of the system for adapting to different inflow regimes.   

Valunjkar (2007) compared the optimal cropping pattern resulted from LP, FLP and fuzzy 

interface system (FIS) techniques applied to the command area of Pench irrigation project in 

Maharashtra, India for different reliable flow conditions.  The FLP and FIS were constructed 

with fuzziness involved in constraint coefficients and available surface water.  It was reported 

that the FIS resulted a maximum net benefits of Rs. 655.13 million and Rs. 389.60 million for 

normal and critical rainfall year, respectively.  It was concluded that the FLP and FIS were 

more suitable and superior to conventional techniques for deriving optimal crop planning.   

A LP model was developed by Bozorg Haddad et al. (2009) for deriving optimal annual 

cultivation rules in a multi-crop irrigation area with the objective of maximizing the annual 

benefits from the reservoir–irrigation system.  In this study, the annual irrigation areas were 

considered as a linear function of storage at the end of the last operating year and the average 

inflow rate of the current year.  It was reported that the developed cultivation rules showed a 

40% decrease in the value of the objective function compared to the previous study by 

Moradi-Jalal et al. (2007) for the same study area.  However, by analysing the rules curves for 

five-year generated inflow series, it was stated that the developed rule curves will be helpful 

for planners and/or stakeholders to decide at the beginning of each year how much and which 

type of product should be cultivated.  
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Jothiprakash et al. (2011a) developed a CCLP for deriving an optimal cropping pattern for 

SRSP, India.  The CCLP model was solved for various dependable inflows levels obtained 

from monthly and annual inflow series.  It was reported for the probability of model time 

period (monthly) should be considered rather than planning time period (annual).  

A weekly irrigation planning model was developed by Srinivasa Prasad et al. (2011) to derive 

optimal cropping pattern for Nagarjuna Sagar Project (NSP), Andhra Pradesh, India.  The 

objective of the model was to maximize the annual net benefits to obtain optimal cropping 

pattern and weekly releases to the crops grown in each sub area under each canal.  The model 

was solved for four levels (90%, 85%, 80% and 75%) of reliability of weekly inflow to 

account the uncertainty.  It was reported that the total annual benefit and total allocated area 

for 75% reliability was higher compared to 90% reliability for all states of initial storage of 

reservoir.  It was also stated that the initial storage of the reservoir at the beginning of the 

season influenced the cropping pattern and water allocations.  Hence, a minimum carry over 

year storage of 1000 × 106 m3 was recommended to get maximum annual benefit. 

Tzimopoulos et al. (2011) derived optimal cropping pattern of an irrigation area with the 

objective of maximizing the net benefits.  It was reported that the LP model provided the 

optimal cropping pattern for the region with highest profit, both for the cultivator and the 

water resources managers.  Alabdulkader et al. (2012) developed a LP model for deriving the 

optimal cropping pattern in Saudi Arabia with the objective of maximizing the net annual 

return.  The developed model was aimed to efficiently allocate the scarce water resources and 

arable land among the competing crops in Saudi Arabia.  It was reported that the results 

showed the potential to generate a net return equivalent of about 2.42 billion US $ per year. 

A LP model was developed by Singh and Panda (2012) to optimally allocate the land and 

water for maximizing net annual returns from an irrigated area in Haryana, India.  The yield, 

price and production cost of crops, unit costs of canal water, groundwater, quality of the 

mixed canal water and groundwater and NIR of crops were considered in the model.  It was 

reported that the model resulted in 26% increase in net annual return from the study area.  

However, the crop area for rice, mustard, barley and gram were decreased while cotton, 

sugarcane, wheat, millet and sorghum were increased.  It was also reported that the model 

resulted in an increased groundwater use to mitigate the water logging and salinity problems.  
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The study recommended the conjunctive use of canal water and groundwater to maximize the 

farm income and also to alleviate water logging problems. 

2.2.1.2 Non-Linear Programming 

A non-linear programming (NLP) model is also similar to LP, consists of objective function, 

constraints and variables.  The difference is that a NLP includes at least one non-linear 

function, which could be the objective function, or some constraints.  Many real world water 

resources systems are inherently non-linear in nature.  Simonovic and Srinivasan (1993) 

developed a NLP model for optimal operation a multi-purpose reservoir for hydropower 

generation and flood control.  This model determined the optimal reservoir release policy 

along with the optimal reliabilities of satisfying hydropower demand and flood control storage 

requirements.  It was reported that the reliabilities of reservoir system performance for flood 

control and hydropower production were 0.7789 and 0.8307 respectively.  

Sinha et al. (1999) developed a non-linear optimization model for a multi-purpose multi-

reservoir operation in India.  In this study, a modified sequent peak algorithm is used to 

determine the storage capacity of the reservoirs.  The gradient-based optimization algorithm 

was employed to integrate the simulation into an optimal screening model.  It was reported 

that the developed model successfully integrated the behaviour analysis algorithm, automatic 

differentiation and sequent peak algorithm.  It was reported that the model resulted in 11.10% 

cost saving and 8.72% reduction in land submergence.  It was concluded that the model 

provided a compact representation of the screening algorithm and could be used to screen 

large reservoir systems efficiently. 

Ailing (2004) optimized the operations of two hydroelectric reservoirs in series on the upper 

reaches of the Yellow River in China using a NLP model. The decomposition–coordination 

method was used to simplify the complexity of the problem.  It was reported that the model 

resulted in a total annual electricity production of 7.983 billion KWh, which is 6.3% higher 

than the actual.  It was concluded that the method is even more applicable for real time 

optimal operation of multiple reservoir systems.  Devamane et al. (2006) developed a NLP 

model for a multi-reservoir system in upper Krishna basin and solved using General Algebraic 

Modelling System (GAMS) package.  The objective of the study was to maximize the 

irrigation, municipal and industrial releases, and power production.  The results were 



17 

compared with LP model.  It was reported that the NLP model resulted in less irrigation 

deficit with more power production than LP model.  

Barros et al. (2009) studied the impacts of the upstream storage reservoirs on the hydropower 

production of Itaipu hydropower plant, which is a run-of-river reservoir and does not have 

storage capacity. The analyses were carried out using the HIDROTERM (combination of 

hydro model (HIDRO) and a thermal model (TERM)), which is basically a non-linear 

optimization model written using the GAMS package.  The model was optimized using three 

decades of historical inflow data and reported 14% higher power production through 

regularization of upstream reservoirs.  Thus, it was concluded that the upstream reservoirs 

impacts significantly on the hydropower production of Itaipu hydropower plant. 

Devamane et al. (2009) developed a storage based optimal operational policies for multi-

reservoir system using a NLP model.  The NLP model was solved year by year using GAMS-

Minos package for 37 years historic data.  The effect of storage on the release rules was 

considered to derive monthly reservoir operational rules.  Based on the results of optimization 

model, two set of relationships, (1) relationship between individual storage versus total 

system storage and (2) relationship between optimal releases versus the individual reservoir 

available water were studied.  By using regression analysis, a set of storage allocation 

functions and release rule equations are derived.  The rules derived from optimization model 

are evaluated using a rule based simulation (RBSIM) model for 5 years of historic data to 

assess the improvement in the performance.  It was reported that the RBSIM model (5117 

GWh) produced higher hydropower than the NLP model (5063 GWh). 

The non-linear functions also can be handled using DP technique.  Different types of DP like 

deterministic dynamic programming (DP) (Karamouz and Houck, 1982, 1987; Boehle et al., 

1983; Karamouz et al., 1992; Jothiprakash and Mohan, 2003), stochastic dynamic 

programming (SDP) (Karamouz and Houck, 1987; Vedula and Mohan, 1990; Braga Jr et al., 

1991; Ben Alaya et al., 2003; Jothiprakash and Shanthi, 2004; Gakpo et al., 2005), fuzzy 

stochastic dynamic programming (FSDP) (Tilmant et al., 2002; Mousavi et al., 2004), 

bayesian stochastic dynamic programming (BSDP) (Mujumdar and Nirmala, 2007), folded 

dynamic programming (FDP) (Nagesh Kumar and Baliarsingh, 2003), incremental dynamic 

programming (IDP) (Kim et al., 2001; Yurtal et al., 2005), etc. were also used of deriving 

optimal reservoir operation policies. 
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2.2.2 Simple Evolutionary Algorithms 

Many conventional deterministic and stochastic LP, NLP and DP models have been 

developed extensively to derive the operating rules for single as well as multi-reservoir 

system with single objective.  However, these conventional techniques may result in local 

optimal solution or slower iteration for complex problems.  LP models are not suitable for 

non-linear problems and linearization increases the complexity of the problem.  Some of the 

disadvantages of NLP are time consuming, iterative processing, requirement of large storage 

space and may results in local optimal solution (Sinha et al., 1999).  The DP may result in 

curse of dimensionality for large number of discretization.  To overcome these drawbacks of 

conventional techniques, soft computing techniques are used and proved to be more efficient 

for optimization problems.  Among different soft computing techniques, application of 

evolutionary algorithm (EA) to water resources system engineering have been discussed in 

the following section, particularly literature on genetic algorithm (GA) and differential 

evolution (DE) algorithm.  Ranjithan (2005) emphasised the role of evolutionary computation 

in environmental and water resources systems analysis.  Savic (2008) reported that EAs are 

more suitable for complex water resources system optimization problems that are difficult to 

evaluate through iterations.  Reddy and Nagesh Kumar (2012) discussed key features of 

various bio-inspired computational algorithms and their scope for application in science and 

engineering fields.  One of the significant advantages of soft computing techniques is that 

they can handle any type of objective function.   

2.2.2.1 Genetic Algorithms 

Genetic algorithm (GA) is a powerful global optimization search technique and has a wide 

spectrum of application in problems of engineering and science (Goldberg, 1989).  The 

working principle of GA mimics the processes of biological evolution in order to solve 

problems and to model evolutionary systems.  Basically, it is search based optimization 

techniques, which searches the optimal solution from a population of possible solutions.  GA 

uses the probabilistic rules in the search process, and they can generally outperform the 

conventional optimisation techniques on difficult, discontinuous and multimodal functions 

(Solomatine et al., 2008).  Chang and Chen (1998) reported that the GA is a very promising 

technique for solving the water resource management models.  GAs have been increasingly 

applied to various search and optimization problems (Deb, 1999).  Mohan and Vijayalakshmi 

(2009) and Rani et al. (2013) presented a detailed review and application of GA in water 
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resources.  Nicklow et al. (2010) presented a state-of-art review about application of GA in 

water resources planning and management.  A detailed review about the application of GA for 

reservoir optimization is discussed in this section. 

Chen (1997) demonstrated the application of GA for the management of ShiJing irrigation 

network using sequence crossover, multi-points crossover and multi-points mutation methods.  

Chang and Chen (1998) compared the performance of the binary coded genetic algorithm 

(BCGA) and real coded genetic algorithm (RCGA) for the flood control operation of a 

reservoir system in Taiwan.  It was reported that the RCGA obtained better results than the 

BCGA, in terms of higher mean objective function values with smaller standard deviation and 

converges quickly. 

Wardlaw and Sharif (1999) developed a GA model for a four reservoir system and compared 

the results with the discrete deterministic dynamic programming (DDDP).  The developed GA 

model employs real value coding, tournament selection, uniform crossover, and modified 

uniform mutation.  The crossover probability was fixed as 0.70 after sensitivity analysis by 

trial and error method.  It was reported that the four reservoir problem achieved the near 

global optimum within 500 generations with a population size of 200.  The same code was 

used to solve a ten reservoir problem with some modification to the evaluation function.  The 

same parameters of GA used in the four reservoir problem were used here also.  The 

maximum return achieved for ten reservoir problem was 1190.25, which is 99.7 % of the 

known global optima.  It was concluded that GA was capable of addressing large complex 

water resources problems. 

Further, Sharif and Wardlaw (2000) extended the application of GA model developed by 

Wardlaw and Sharif (1999) for a multi-reservoir system in Brantas Basin, Indonesia.  The GA 

model followed the set up of tournament selection, elitism, uniform crossover and modified 

uniform mutation.  The constraints were handled by using quadratic penalty equation.  Four 

different cases were analysed and the results of the GA model were compared with the results 

of DDDP.  It was reported that GA achieved 99.84, 99.98 and 99.07% of DDDP results for 

the first three cases.  It was also stated that GA performs better than the DDDP in terms of 

delta water supply. 
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Wardlaw and Bhaktikul (2001) developed a GA model to derive optimal operating rules for 

Upper Wardha reservoir in Maharashtra, India.  The fitness function was minimizing the 

squared deviation of monthly irrigation demand.  The decision variables were monthly 

releases for irrigation from the reservoir and initial storages in the reservoir at beginning of 

the month.  It was reported that even during the low flow condition, the GA model satisfied 

the downstream irrigation demand.  It was concluded that GA model has the capability to 

perform efficiently for the real world reservoir operation problems. 

Chen (2003) applied RCGA to derive the 10-day operating rule curves for a reservoir in 

Taiwan.  The parameter of the RCGA was determined by testing different parameters and 

reported that macro evolutionary selection and blend-α crossover were better.  It was also 

reported that the solutions were very close to the optimum value and achieved within 200 

generations with a population of 100.  The rule curve resulted by RCGA maintained higher 

water level in the reservoir and water deficits were lower than the original rule curve.  It was 

concluded that RCGA was a most promising technique and very efficient for optimizing 

highly nonlinear systems. 

Raju and Nagesh Kumar (2004) developed a GA model to derive efficient cropping pattern 

for maximizing benefits for SRSP in India and compared the results with LP model.  The 

penalty function method was used to convert the constrained problem into an unconstrained 

problem with a reasonable penalty coefficient.  The GA parameters were optimized by 

running the model for various values of population, generations, crossover and mutation 

probabilities and reported that 50, 200, 0.6 and 0.01, respectively were found to be better.  

The optimal cropping pattern was derived for 90% dependable inflow level.  It was reported 

that the irrigated area and net benefits obtained by GA have deviated by 5.15 and 3.97% as 

compared to LP results.  It was concluded that GA was an effective optimization tool for 

irrigation planning and the results can be utilized for efficient planning of the irrigation 

system.  

Ahmed and Sarma (2005) developed a GA model for deriving the optimal operating policy of 

a multi-purpose reservoir and compared its performance with the SDP model.  Both the GA 

and SDP models were developed with the objective of minimizing the squared deviation of 

irrigation releases.  Four policies were developed assuming the irrigation release as piecewise 

linear functions.  The model performance was evaluated using a simulation model for 20 
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years of historic monthly stream flow.  It was reported that the policies derived by GA model 

were efficient than SDP model for irrigation, however the SDP model produced more 

hydropower than GA model.  However, it was also reported that GA model releases were 

nearer to the required demand and concluded that GA model was advantageous over SDP 

model in deriving the optimal operating polices.  Based on the simulation results, policy 

derived by GA model was recommended because of its overall better performance.  It was 

concluded that the operating policy derived using GA was promising and competitive and can 

be efficiently used for deriving operating policy for a multi-purpose reservoir.  

Chang et al. (2005) compared the BCGA and RCGA model for deriving optimal operating 

rule of the Shih-Men reservoir, Taiwan.  The rule curves were assumed to be piecewise linear 

functions and the coordinates of the inflection points in the rule curves were optimized.  It 

was reported that both BCGA and RCGA reached steady state solution after 10 generations.  

It was reported that the operating rule curves obtained from both the GA models performed 

better in terms of water release and hydropower production.  However, it was concluded that 

RCGA was slightly better than BCGA in terms of objective function value.   

Jian-Xia et al. (2005) compared the performance of BCGA and RCGA model with DP model 

and disaggregation and aggregation method for hydropower generation.  The GA models were 

developed with ranking selection, two-point crossover with 0.75 probability, uniform 

mutation with 0.05 probability and population size as 100.  It was reported that the RCGA 

was two times faster than the BCGA based on the convergence to the optimal solution.  It was 

also concluded that GA could be easily applied to complex nonlinear systems.   

Jothiprakash and Shanthi (2006) developed a GA model to derive optimal operating rules for 

the Pechiparai reservoir in Tamil Nadu, India.  The objective function was to minimize the 

annual sum of squared deviation from desired irrigation release and desired storage volume.  

The decision variables were release for irrigation and other demands (industrial and municipal 

demands) from the reservoir.  The GA model was developed using roulette wheel selection 

method, uniform crossover and modified uniform mutation operator.  Based on sensitivity 

analyses, population size, crossover probability and number of generations were fixed as 150, 

0.76 and 175 respectively.  It was reported that the GA model resulted in irrigation releases 

equal to irrigation demand. 
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Nagesh Kumar et al. (2006) developed a GA model for deriving optimal operational policy 

and optimal crop water allocations of the Malaprabha single-purpose irrigation reservoir in 

Karnataka State, India.  The objective was to maximize the sum of the relative yields from all 

crops in the irrigated area.  The model takes into account reservoir inflow, rainfall on the 

irrigated area, intra-seasonal competition for water among multiple crops, the soil moisture 

dynamics in each cropped area, the heterogeneous nature of soils, and crop response to the 

level of irrigation applied.  It was reported that the optimal operating policy obtained using 

the GA was similar to LP.  Also stated that GA model can be used for optimal utilization of 

the available water resources of any reservoir system to obtain maximum benefits.  

An indirect penalty method of constraint handling was proposed by Chang (2008) for the 

flood control optimization of Shihmen reservoir, Taiwan.  A suitable penalty parameter was 

proposed to reach a solution without violating the constraints.  The constraints were divided 

into bound constraints, soft constraints and hard constraints.  The bound constraints were used 

to confine the search space.  The soft constraints were allowed to violate while the hard 

constraints were not allowed to violate the search space by imposing severe penalty.  On 

comparing the results for 29 typhoon events, it was reported that the Simplex method 

unsatisfied the constraints where as the penalty type GA converged to the feasible solution 

space.  It was concluded that the penalty type GA provided rational hydrographs to reduce 

flood damage during the flood operation and increased the final storage for future usages. 

Karamouz et al. (2008) developed a GA model to optimise the cropping pattern of eight 

irrigation networks in Tehran province in Iran for the conjunctive use of surface and 

groundwater.  The GA model was developed with real value encoding, tournament selection 

and single point crossover.  The model was formulated in such a way that both cropping 

pattern and water allocation from surface or groundwater resources are simultaneously 

optimized.  The GA parameters such as population size, crossover and mutation probabilities 

were fixed as 100, 0.9 and 0.003, respectively based on sensitivity analysis.  On comparing 

with the existing cropping pattern, it was reported that there was significant change in the 

cropping area for different crops for achieving higher total benefit. 

A monthly time step GA model was developed by Jothiprakash and Shanthi (2009) with the 

objective of minimizing the squared deviation of monthly irrigation deficit.  The optimal 

results from the GA model were compared with the conventional SDP model.  Both the 
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models were solved with same objective function and constraints.  Based on the performance, 

it was reported that the GA model satisfied the demand to a greater extent, whereas SDP 

model resulted in irrigation deficit.  It is reported that GA models are better suited than 

conventional optimization techniques for self sufficient systems.  It was concluded that the 

GA model is a robust optimization technique for solving complex problems.   

Zahraie and Hosseini (2009) developed a GA model for optimizing the Zayandeh-Rud 

reservoir operations in Iran considering the variation in water demands.  In order to 

incorporate the demand uncertainties in the optimal operation policies, different types of 

linear equations were developed using different combinations of inflow, initial storage and 

water demands.  The optimum values for crossover probability, mutation probability, 

population size, and number of generations were estimated as 0.60, 0.008, 1800 and 112, 

respectively.  It was reported that the fuzzy linear regression equations with asymmetric 

membership function resulted the best long-term performance in meeting variable demands. 

Chang et al. (2010) extended the constrained GA model developed by Chang (2008) for 

developing an optimal operational strategy for the Shih-Men Reservoir considering the 

ecological base flow.  The ecological base flow requirements are considered as constrains in 

the GA model while minimizing the generalized shortage index (GSI).  The constrained GA 

results were compared with the historical operations for three cases of ecological base flow 

requirements.  It was reported that the constrained GA model performed better compared to 

current M5 operation rule cures and significantly improved the efficiency and effectiveness of 

reservoir operations for multiple water users. 

Garudkar et al. (2011) developed an optimization model to derive optimal reservoir releases 

of Waghad Irrigation Project in upper Godavari basin of Maharashtra, India.  An elitist GA 

model was developed considering the heterogeneity of crops in the command area with the 

objective of maximizing the net benefits.  In this study, tournament selection with uniform 

crossover and uniform mutation was used in GA.  The constraints were handled using penalty 

function method.  On comparing the results with present practice, it was reported the GA 

model resulted 19% increase in total net benefits and net irrigated area increased to 50% of 

irrigable command area. 
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Hınçal et al. (2011) explored the efficiency and effectiveness of GA technique for optimizing 

multi-reservoir system.  Three reservoirs in the Colorado River Storage Project were 

optimized for maximization of energy production.  The constraint on storages was embedded 

into the objective function as penalty terms.  The results obtained were compared with the real 

operational data and it was reported that GA was found to be effective technique and can be 

utilized as an alternative technique to other traditional optimization techniques. 

Jothiprakash et al. (2011b) compared the performance of GA and SDP models in deriving the 

optimal operational rules for a multi-reservoir system in India.  The population size, crossover 

probability and number of generations of the GA model were fixed as 150, 0.84 and 275 

respectively based on sensitivity analyses.  The penalty function method was used to handle 

the constraints.  On comparing the results with single reservoir system (Jothiprakash and 

Shanthi, 2006, 2009), it was stated that the increase in complexity due to increase in number 

of variables for the multi-reservoir system can be easily handled by increasing the probability 

of crossover and increasing the number of generation in GA technique.  Finally, it was 

concluded that GA is a robust technique and provides better solution than SDP models.   

2.2.2.2 Differential Evolution Algorithm 

Differential evolution (DE) algorithm is one of the most recent global optimization technique 

developed by Storn and Price (1995).  Mayer et al. (2005) reported DE algorithm as a simple 

variant of an evolutionary algorithm.  Like other evolutionary algorithms, DE is also a 

population based technique that searches the global optimum by evaluating the objective 

function using the randomly generated initial population (Price et al., 2005).  Some of the 

applications of DE pertains to reservoir operation is discussed in this section. 

Vasan and Raju (2007) applied DE algorithm to derive optimal irrigation planning for Mahi 

Bajaj Sagar Project, India. Ten different strategies of DE were analyzed with various 

population sizes, crossover factor (CR) and weighting factors (F) and the results of DE 

models were compared with LP model.  Based on sensitivity analyses on ten different 

strategies of DE, it was reported that DE/rand-to-best/1/bin strategy performed better with 

maximum benefits of Rs. 113.15 crores and less CPU time for a population size of 1100, CR 

as 0.9 and F as 0.6.  It was reported that both the results of DE and LP models were 

comparable for high dimensional problems. 
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Pant et al. (2008) applied DE to determine optimal cropping pattern for Pamba-Achankovil-

Vaippar link project command area in India.  The objective was to maximize the net irrigation 

benefit from the crops cultivated in the area subjected to various constraints.  The model was 

evaluated for a population size of 30, crossover constant as 0.5, and scale factor as 0.5 for 

1000 generations.  The model was optimized for 50%, 75% and 90% dependable inflow.  On 

comparing the results with LP model, it was reported that the DE performed better for 75% 

and 90% water year dependable flows.  However, both the LP and DE resulted in same net 

benefits and crop area for 50% dependable inflow level.  It was concluded that DE could be 

considered as an alternative for LP. 

Adeyemo and Otieno (2009a) derived optimal crop planning using DE algorithm and 

compared the results with LP model.  The problem was solved for 10 different strategies of 

DE with the objective of maximizing the total income.  The constraints of the problem were 

handled using penalty function method.  It was stated that the DE/rand-1-bin strategy 

performed better for a population size of 160, crossover as 0.95 and scale factor as 0.5.  It was 

reported that both the techniques resulted in same area for almost all the crops and same total 

volume of water to irrigate the crops.  It was concluded that DE is capable of obtaining the 

global optimal solution. 

Regulwar et al. (2010) applied DE algorithm to derive optimal operation of multipurpose 

reservoir with the objective of maximizing the hydropower production and compared it with 

the results of GA model.  The control parameters such as population size, crossover constant 

and the weight were fixed according to their fitness value.  Based on sensitivity analysis, it 

was reported that the De/best/1/bin strategy performed better among the ten strategies of DE.  

It was reported that the DE model resulted in a maximum hydropower production of 30.885 × 

106 kWh with an irrigation release of 928.44 × 106 m3.  Based on the results, it was concluded 

that both the GA and DE are comparable and performing equally better. 

2.2.3 Hybrid Evolutionary Algorithms 

Simple EAs often suffer the problems of premature convergence and evolving too slowly 

often exist when initial population is not so good (Li and Jiang, 1998; Yuan et al., 2002; 

Cheng et al., 2008).  Cheng et al. (2008) reported that with the increase in the complexity of 

larger scale water resources system, GAs frequently face the problems of premature 
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convergence, slow iterations to reach the global optimal solution and getting stuck at a local 

optimum.   

In order to generate a good initial population, recently chaotic technique is employed to utilize 

its merits.  Chaos is the existence of unpredictable or random behaviour that often occurs in 

non-linear systems (Williams, 1997).  The characteristics of chaos are highly sensitivity to the 

initial value, ergodicity and randomness (May, 1976).  Li and Jiang (1998) proposed chaos 

optimization algorithm (COA) and demonstrated its effectiveness through five complex 

functions.  Lü et al. (2003) stated that the chaotic algorithm is very efficient in maintaining 

the population diversity during the evolution process of GA technique.  The advantages of the 

chaos characteristics along with optimization algorithm will more likely result in global 

optimum solution with higher search speed than some stochastic optimization algorithms (Li 

and Jiang, 1998; Cheng et al., 2008; Han and Lu, 2008).  Tavazoei and Haeri (2007) 

compared ten one-dimensional mapping methods which is used as search patterns in the 

COA. It was reported that the search patterns differed with each method in view of 

convergence rate, algorithm speed and accuracy.  Finally, it was concluded that choosing the 

best map for optimizing is a problem-based subject.  Some of the hybrid EAs is reviewed in 

this section. 

Yuan et al. (2002) proposed a hybrid chaotic genetic algorithm (HCGA) model for a short-

term hydropower scheduling.  In their study, the initial population was generated as chaotic 

sequence using one-dimensional logistic map method and they introduced a self-adoptive 

error back propagating mutation in order to prevent premature convergence.  It was reported 

that HCGA was feasible and effective method for solving the large scale constrained non-

linear optimization problems.  Caponetto et al. (2003) used chaotic sequence instead of a 

random numbers in the selection, crossover and mutation operations to improve the 

performance of EAs in solving a salesman problem.  Methods such as one-dimensional 

logistic map, tent map, sinusoidal iterator, gauss map and lozi map were used to generate the 

chaotic sequences.  The proposed method was tested on problems like De Jong functions, 

LMI eigen value problem, Iterated Prisoner’s Dilemma problem and Travelling Salesman 

Problem.  A statistical analysis using t-test was performed to validate performance of the EAs.  

It was reported that the EAs showed improvement when chaos sequences were used instead of 

random numbers. 
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Chen and Chang (2007) proposed a real-coded hypercubic distributed genetic algorithm 

(HDGA) for optimizing reservoir operation to prevent premature convergence and to obtain 

near global optimal solutions.  The HDGA was designed to have various sub-populations that 

are processed using separate and parallel GA. Genetic operators such as linear ranking 

selection, blend-α crossover and Gaussian mutation were applied to search the optimal 

reservoir releases.  The HDGA was then applied to a multi-reservoir system in northern 

Taiwan.  It was reported that the HDGA minimized the water deficit of the reservoir system 

and provided much better performance than the conventional GA in terms of obtaining lower 

values of the objective function and avoided local optimal solutions. 

Momtahen and Dariane (2007) developed a direct search genetic algorithm (DSGA) model.  

The model was extended to multi-reservoir system with some modification by Dariane and 

Momtahen (2009) to enhance the computational efficiency.  Initially, the DSGA was applied 

to a three reservoir problem and then applied to seven reservoir system with some 

modifications.  Finally, the model was applied to 16 reservoir systems with the objective of 

minimizing the overall operation costs.  The GA parameters used in the model were 

tournament selection, arithmetic crossover, and arithmetic mutation.  The best population size 

of 200, crossover and mutation probabilities of 0.80 and 0.05 were found to best using trial 

and error method.  On comparing the results with SDP and DPR results, it was reported that 

the GA model performed better than other two conventional models.  It was concluded that 

GA models were capable of optimizing large and complex multi-reservoir systems and can 

optimize any type of objective function. 

A novel HCGA based on the COA and GA was developed by Cheng et al. (2008) for 

optimizing a hydropower reservoir.  The one-dimensional logistic map was used to generate 

initial population as chaotic sequence.  Annealing chaotic mutation operation was proposed to 

maintain the population diversity and to avoid the local optimum.  Upon testing with standard 

benchmark problems, it was reported that the HCGA improved convergence speed and 

solution accuracy.  Furthermore, the developed model was applied for the monthly operation 

of a hydropower reservoir with a series of monthly inflow of 38 years.  For both GA and 

HCGA, a crossover probability of 0.80, mutation probability as 0.10, population size as 100 

were used and the results were compared.  It was reported the long term average annual 

energy production was the best in HCGA and also it converged faster than DP and the 
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standard GA.  It was concluded that HCGA is feasible and effective method for optimal 

operations of complex reservoir systems. 

Han and Lu (2008) proposed a Improved Mutative Scale Chaos Optimization Algorithm 

(IMSCOA) for the economic load dispatch problem. The proposed algorithm has modification 

in selecting initial value, search configuration and convergence criteria to stop the search.  It 

was reported that IMSCOA obtained better optimal value than other algorithms regardless of 

the scale and nonlinearity of the problem.  It was concluded that the application of the chaos 

optimization algorithm in power systems will bring enormous economic benefit. 

A new improved chaotic DE algorithm was proposed by Yuan et al. (2008) to optimize the 

daily hydropower production and the results were compared with the conjugate gradient and 

two-phase neural network methods.  The crossover ‘CR’ and mutation factor ‘F’ is 

represented as chaotic sequence using one-dimensional logistic map method.  The objective of 

the study was to minimize the summation of the deviation between the hourly load demand 

and hydropower generation subject to satisfying all kinds of physical and operational 

constraints.  The DE parameters such as population size, initial mutation factor, crossover 

factor and maximum generation were set as 80, 0.40, 0.90 and 2000 respectively.  The model 

was run for 20 times for different initial populations in succession and the best result was 

selected as the final optimization solution.  It was reported that the final optimal result 

obtained by chaotic DE was better than the two-phase neural network and conjugate gradient 

method. 

Zahraie et al. (2008) proposed a varying chromosome length genetic algorithm (VLGA) 

model for optimal reservoir operation.  In the VLGA model, the chromosome length was 

sequentially increased to obtain good initial solution.  Based on hydrologic characteristics, 

two models, VLGA-I and VLGA-II were proposed.  The VLGA-I model used previous year 

best solutions as the initial solutions, where as the VLGA-II chooses the initial solutions using 

the K-nearest neighbour algorithm.  All the models were applied to three case studies of 

Zayandeh-Rud Reservoir, Karoon-I Reservoir, and the system of Bakhtiari (upstream) and 

Dez (downstream) Reservoirs in Iran to evaluate their performance.  It was reported that all 

the models showed an improvement in the convergence speed for all case studies.   
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To increase the rate of convergence in DE Algorithm, Yin and Liu (2009) modified the 

mutation operator by randomly selecting four different individuals from population instead of 

two.  The modified DE algorithm was applied to optimize the hydropower production.  On 

comparing with a DP model, it was reported that the DE algorithm was superior in calculation 

speed and provided a new approach for optimal operation of multi-reservoir to overcome the 

curse of dimensionality of DP model. 

Chen et al. (2010) developed an adaptive GA model with double dynamic mutation operator 

to prevent the premature convergence and local optima.  The model was applied for the eco-

friendly operation of cascade reservoirs in the Southwest of China.  It was reported that the 

adaptive GA resulted in higher upstream water level and 4% more power generation than 

simple GA model.  It was concluded that the adaptive GA with the dynamic mutation operator 

fulfilled the goal of eco-friendly reservoir operation and enhanced the global search accuracy 

in comparison with simple GA model.  

Davendra et al. (2010a) analysed the population dynamics in EAs and its relation to chaotic 

systems.  A dynamic population was generated using the basic chaotic principles to induce 

and retain diversity in the population.  The model was simulated using GA, DE and Self-

Organizing Migrating Algorithm (SOMA) on the combinatorial problem of quadratic 

assignment.  Each simulation was repeated 10 times with the same control parameters and 

reported that there were very good improvement in the results.   

Ebrahimzadeh and Jampour (2013) used Lorenz chaotic system to generate pseudo random 

numbers for operators of GA to avoid local convergence.  A population size of 40, crossover 

probability of 0.6 and mutation probability of 0.02 are fixed as the GA model parameters.  

Upon testing benchmark problems, it was reported that Chaos GA model resulted 34% 

improvement in Schaffer function and 54% improvement in Clonalg function.  It was 

concluded that the proposed method converged quickly and much more efficient than 

traditional GA in solving optimization problems. 

Vucetic and Simonovic (2013) proposed a novel Fuzzy Differential Evolution (FDE) 

algorithm to consider the vague information on the search space and to deliver a more focused 

search.  The proposed FDE algorithm utilized the fuzzy triangular membership function for 

variable initialization and random alpha-cut membership function to create alpha-cut intervals 
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to be perturbed through mutation by fuzzy arithmetic.  Upon demonstrating the algorithm on 

several benchmark problems, the algorithm was used for flood control operation of Wildwood 

reservoir in the Upper Thames River basin, Canada.  It was reported that the FDE algorithm 

performed better than the classical DE in terms of convergence speed. 

2.3 Multi-Objective Optimization 

A surface water reservoir serves multiple purposes such as irrigation, hydropower, industrial 

and domestic water supply, flood control, navigation, recreation, etc.  These purposes may 

conflict and/or compete with each other.  For example, crop production requires more releases 

from the reservoir where as the hydropower production requires more storage to maintain the 

head in the reservoir.  Therefore, it is very much essential to consider all the objectives 

simultaneously to arrive an optimal trade-off among the conflicting objectives so as to satisfy 

all the demands.  The literature review on various multi-objective optimization models using 

conventional and soft computing techniques are presented in this section. 

2.3.1 Conventional Multi-Objective Optimization Methods 

The conventional techniques solve the multi-objective problem either by weighting or 

constraint method.  In the weighting method, a relative weight is assigned to each objective 

function and converted into a single objective by adding all the objectives.  A given set of 

weight will give only a single set of non-inferior solution and the relative weights are need to 

be varied systematically to produce a pareto-optimal front.  In the constraint method, a single 

objective is optimized by considering all other objectives as constraints.  Thus, both these 

methods convert the multi-objective optimization problem is into a single objective 

optimization problem to generate only a single pareto-optimal solution in a single iteration.  

Hence, to generate the pareto-optimal front, the conventional optimization model has to be 

solved for several times.  Some of the multi-objective studies carried out using conventional 

methods are discussed in this section. 

2.3.1.1 Weighting or Constraint Method 

Dauer and Krueger (1980) developed a methodology for solving multi-objective water 

resources problems. The proposed method decomposed the system into groups of objectives 
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according to their priority in the model.  The goal programming was then used to analyse the 

groups and the solution of each individual group was arrived using the method of constraints.  

The proposed methodology was demonstrated using multi-period screening model for a river 

basin development.  The constraint method was used by Yeh and Becker (1982) to develop 

the trade-off between different objectives of California Central Valley Project.  The five 

objectives considered were (1) hydropower production, (2) fish protection, (3) water quality 

maintenance, (4) water supply, and (5) recreation.  The multi-objective model was solved 

using modified LP and DP techniques for various combinations.  Two sets of monthly 

historical stream flows corresponding to a drought year and an excess water year were used to 

develop the corresponding non-inferior solution sets.  It was concluded that the constraint 

method of multi-objective optimization can be practically applied to multi-reservoir system 

optimization. 

A chance constrained goal programming model (CCGP) was developed by Changchit and 

Terrell (1989) for a three reservoir system which is a portion of the Red River reservoir 

system in Oklahoma, U.S.A.  The objective was to minimize the undesirable deviations from 

the goals and goals were water supply, downstream flow, hydropower generation, recreation 

and flood protection.  All these goals were expressed either deterministically or 

probabilistically depending on the inflow and were converted to their deterministic 

equivalents.  The inflow was assumed to be normally / log normally distributed and the 

conditional cumulative distribution function was determined with known conditional mean 

and conditional standard deviation of inflows.  It was reported that the use of conditional 

cumulative distribution function; which considered the correlation between inflows, improved 

the accuracy of the results. 

A multi-objective LP model was developed by Mohan and Raipure (1992) to derive the 

optimal release policy of a large-scale multi-reservoir system in Chaliyar River basin in 

Kerala, India.  The five reservoirs in the basin were considered as a single system and the 

optimal monthly releases from the reservoirs were derived with the objective of maximizing 

the irrigation releases and hydropower production using LP technique.  The constraint 

technique was used to handle the multiple objectives and three series of inflow sequences 

representing the normal, drought, and excess flow conditions were used in the model.  It was 

reported that the normal and excess flow conditions satisfied all the demands, whereas the 
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drought flow condition resulted in deficit.  From the trade-off analysis, it was reported that the 

power production decreased when there is an increase in irrigation release.   

Barros et al. (2003) developed a monthly NLP model for the management and operations of 

the Brazilian hydropower system.  The NLP model considered six objectives such as (1) 

minimizing the loss of the stored potential energy, (2) minimizing storage deviations from 

targets, (3) maximizing total energy production, (4) minimizing spilled energy, (5) 

minimizing energy complementation and (6) maximizing the profit derived from secondary 

energy and handled using weighting approach.  The formulated NLP model was first 

linearized by two different linearization methods and solved by LP technique.  The outputs 

from the LP were then used as the initial policy for the successive linear programming (SLP) 

and NLP techniques.  All the three techniques, LP, SLP and NLP were solved using the linear 

and nonlinear solvers in GAMS-MINOS.  A comparative analysis was made between the 

linearized and the NLP models.  It was reported that the LP model produced 0.6% less total 

energy and storage varied more frequently in the NLP model than the LP model.  On 

comparing with the historical operational records, it was reported that the NLP model 

performance were superior. 

The HIDROTERM model was used by Zambon et al. (2012) to optimize the management and 

operations of the Brazilian hydrothermal system.  The developed model was solved for 

different scenarios of inflow, demand, and installed capacity to demonstrate the efficiency and 

utility of the model.  It was reported that HIDROTERM model was suitable for different 

applications such as planning operation, capacity expansion, and operational rule studies, and 

trade-off analysis among multiple water users.  

2.3.1.2 Multi-Objective Fuzzy Linear Programming 

The other way to solve a multi-objective optimization problem is to convert the multiple 

objectives as fuzzy variables and solve it for certain level of satisfaction.  Thus, the 

uncertainty and fuzziness are accounted in fuzzy multi-objective optimization (FMOO). 

A multi-objective fuzzy linear programming (MOFLP) model was developed by Gupta et al. 

(2000) for optimal area allocation in Narmada river basin.  Initially, the monthly operations of 

the reservoir are simulated for 30 years and the resulted optimal monthly irrigation releases 

were used as inputs to the MOFLP area allocation model.  It was reported that the minimum 
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area crop plan based on 25 years of historical period should to be adopted to avert the risk.  It 

was concluded that the fuzzy-compromise cropping pattern obtained with 80% dependable 

releases and rainfall could be the best cropping pattern with small risk. 

Raju and Nagesh Kumar (2000b) developed a MOFLP model to evaluate the management 

strategies of SRSP, India. Maximizing the net benefits, maximizing the crop production and 

maximizing the labour requirement were the three objectives considered in MOFLP.  Initially 

all the objectives were optimized using crisp LP and from the results of LP, the objectives 

were fuzzified.  The fuzzified multi-objectives were solved for maximizing the degree of 

satisfaction using 90% dependable inflow.  It was reported that the net benefits, crop 

production and labour employment obtained using MOFLP were lesser by 2.38%, 9.6% and 

7.22% compared to that of crisp LP model.  A similar methodology was used by Raju and 

Duckstein (2003) for evaluating the management strategies of Jayakwadi irrigation project, 

Maharashtra, India using MOFLP approach. While achieving a 0.57 level of satisfaction, it 

was stated that the net benefits, agricultural production, labour employment have decreased 

by 4.13, 5.39 and 3.4% compared to the crisp LP model.  Finally, both the studies concluded 

that MOFLP is a simple and suitable tool for multi-objective optimal crop planning. 

Mehta and Jain (2009) developed an operational policy for a multi-purpose Ramganga 

reservoir in India using MOFLP with the objective of maximizing the release with several 

constraints and solved it in an iterative manner.  The model was set to minimize the damage 

due to floods and droughts and determines optimum releases against demands for domestic 

supply, irrigation, and hydropower generation during monsoon and non-monsoon periods.  

The fuzzy rules were formulated from actual releases and three fuzzy rule based models were 

reported separately for monsoon and non-monsoon periods.  All the models were developed 

using Fuzzy Mamdani (FM) and Adaptive Neuro-Fuzzy Interactive System (ANFIS) – Grid 

and Cluster techniques and results were compared.  It was reported that ANFIS cluster gave 

the best results but FM was more users friendly.  It was concluded that ANFIS cluster method 

was more efficient with highest correlation coefficient but FM method was recommended for 

site use. 

Sahoo et al. (2006) developed a MOFLP to derive planning and management strategies of 

available land-water-crop system of Mahanadi-Kathajodi delta in Eastern India. The objective 

was set to optimize the economic return, production and labour utilization subject to specified 
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land, water, fertilizer and labour availability, and water use pattern constraints.  All the three 

objectives of the LP model were given the same priority level to obtain the compromised 

solution in a fuzzy environment.  Based on the study, conjunctive use of water was 

recommended to restrict further depletion of groundwater.  It was concluded that for optimal 

land-water-crop system planning, the LP model are best suited for single criteria decision 

making and the fuzzy models are best for multi-criteria decision making. 

Zeng et al. (2010) developed a MOFLP model with triangular fuzzy numbers for optimal crop 

planning of Liang Zhou region, Gansu province of northwest China. The optimal cropping 

pattern was derived for different water saving levels and different satisfaction grade.  It was 

reported that the increase in water saving level increased the crop area and net benefits.  On 

comparing the results with multi-objective LP model, it was reported that MOFLP results are 

more stable when uncertain coefficients were involved in the crop area planning.  A MOFLP 

model was developed by Choudhari and Raj (2010) for a four-reservoir system to derive 

optimal operating policy considering the uncertainty in resources, technological coefficients, 

objective function coefficients.  The objectives were maximizing the returns from irrigation 

release and maximizing the returns from power releases.  In addition, the effect of fluctuations 

in irrigation demand and release, power demand and release and available storage volume 

were considered.  It was reported that the feasibility value increased with decrease in the 

corresponding satisfaction level.  It was also stated that the fuzzification of various parameters 

in the optimization problem will result in different operation policies, giving more flexibility 

to the policy maker.  It was concluded that the multi-objective fuzzy optimization has robust 

applications in water resources engineering in general and reservoir operation, in particular. 

Regulwar and Gurav (2010) developed an irrigation planning model to derive optimal crop 

planning in command area of Jayakwadi Project, Maharashtra, India using MOFLP approach.  

Four LP models were developed with the objective of optimizing the net benefits, crop 

production, employment generation and manure utilization.  Then, the MOFLP model was 

formulated using the linear membership function from the results of crisp LP models.  It was 

reported that the MOFLP model resulted in a degree of satisfaction of 0.58.  The model was 

further extended by Regulwar and Gurav (2011, 2012) by considering the uncertainty in 

objectives, resources, technological coefficients using fuzzy.  Both these studies concluded 

that MOFLP was a promising technique for sustainable irrigation planning as it incorporates 

the fuzziness in both resources and decision variables simultaneously.   



35 

Morankar et al. (2013) applied MOFLP to a case study of Khadakwasla complex irrigation 

project in Maharashtra, India. Three objectives, namely, maximization of net benefits, crop 

production and labour employment were considered.  In this study, objective functions were 

considered as fuzzy in nature using different membership functions, namely, nonlinear, 

hyperbolic and exponential and 75% dependable inflow was used to derive the optimal crop 

planning.  It was reported that all the membership functions resulted in higher irrigation 

intensity than the current irrigation intensity.  It was concluded that the exponential and 

hyperbolic membership functions provided similar cropping pattern whereas non-linear 

membership function provided different cropping pattern.   

Mirajkar and Patel (2013) developed a MOFLP model to study the sustainable irrigation 

planning of Ukai reservoir, Gujarat, India. The objectives such as maximizing the net benefits, 

employment generation, revenue generation from municipal and industrial water supply and 

minimization of cost of cultivation were considered.  Initially all these four objectives were 

solved individually using LP technique for 75% exceedance inflow and the pay-off matrix is 

created.  From the pay-off matrix the MOFLP model is formulated and solved for four inflow 

conditions viz, most critical year (90% exceedance probability), critical year (85% 

exceedance probability), normal year (75% exceedance probability), and wet year (60% 

exceedance probability).  It was reported that the 75% dependable inflow was only marginally 

sufficient to meet the requirement and 85% dependable inflow resulted in deficit in water 

availability in the command area. 

2.3.2 Evolutionary Algorithms based Multi-Objective models 

The conventional optimization methods have their own merits and demerits in handling multi-

objective optimization problems.  The major drawback of conventional methods for multi-

objective optimization is that they result in a single pareto-optimal solution rather than a 

pareto-optimal front having multiple solutions.  Hence, the conventional optimization 

techniques need to be run for several times to generate multiple optimal solutions and to form 

pareto-optimal front.  This can be overcome by applying multi-objective evolutionary 

algorithm (MOEA), which produces a true pareto-optimal front with multiple non-dominated 

solutions in a single run.  Coello et al. (2007) discussed various evolutionary algorithms for 

solving multi-objective problems.  Adeyemo (2011) reviewed the applications of evolutionary 

algorithms for multi-objective optimization of reservoir operations.  It was reported that the 
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MOEA are most suitable for solving complex, non-linear, convex and multi-objective 

reservoir problems, since they produce tradeoffs to reservoir operation problems from which a 

reservoir operator can choose a suitable solution. 

2.3.2.1 Multi-Objective Genetic Algorithms 

In many real-life problems, multiple objectives may conflict with each other, and optimizing a 

particular single objective may result in unacceptable solution with respect to the other 

objectives.  Hence, a reasonable solution to a multi-objective problem is to generate a set of 

non-inferior solutions, which satisfies the objectives without being dominated by any other 

solution.  Konak et al. (2006) presented an overview and tutorial about multi-objective 

genetic algorithms (MOGA). 

Kuo et al. (2003) used the weight method to derive the optimal rule curves of a multi-

reservoir system in Chou-Shui River Basin, Taiwan under multipurpose operation using a GA 

model.  The weight method was used to arrive at a trade-off between water supply and 

hydropower production.  A penalty coefficient was added in the objective function to improve 

searching process in GA.  Upon analysing six cases, it was reported that GA efficiently 

obtained different shapes of rule curves using different weight factors.  Similarly, Louati et al. 

(2011) used the weight method to form a single objective from two objectives.   The two 

objectives considered were minimizing the water allocation to demand centers and the salinity 

level of the water supply to end users within a complex multiple reservoir system located in 

Tunisia.  However, the weight method could not provide multiple non-dominated solutions 

and Pareto optimal front in a single run.  The non-dominated sorting GA-II (NSGA-II) 

developed by Deb et al. (2002) produced the Pareto optimal solution in single run and 

overcome the computation difficulties of other multi-objective evolutionary algorithms. 

The NSGA-II was applied by Kim and Heo (2004) for the multi-objective optimization of a 

multi-reservoir system in Han River basin, South Korea.  The multi-objectives that were 

considered in the study were to maximize the storages and minimize the water shortages.  In 

this the study, simulated binary crossover (SBX) with a probability of 0.9 and mutation rate as 

1/36 with a population of 500 were used for 500 generations.  The problem was optimized 

with two distribution indices, 3.0 and 3.8 of SBX.  It was reported that both the distribution 

indices resulted varying co-efficient of variation values for all the reservoirs in the system.  It 

was concluded that NSGA-II could be efficiently used to identify Pareto optimal solutions.   
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Kim and Heo (2006) applied NSGA-II to optimize the multi-objectives of multi-reservoir 

system in the Han River basin.  Two different cases were analysed, in case 1 only the storage 

and release limits constraints of each reservoir in the Han River basin were considered where 

as in case 2 constraint on storage, release limits, water supply demand and end of month water 

level were considered.  The simulation model was applied to evaluate the performance of the 

model and the results were compared with the historical reservoir operation records.  It was 

reported that the NSGA-II resulted in more releases to downstream and maintaining the 

storage in reservoir better than the historical releases.  The study was further extended by Kim 

et al. (2006) for three cases having different constraint conditions.  Both these studies 

concluded that NSGA-II performed well for the optimization of multi-reservoir system having 

multi-objectives. 

The real coded NSGA-II was used by Reddy and Nagesh Kumar (2006) to generate a pareto-

optimal set for Bhadra Reservoir system, India.  The multi-objectives considered were 

minimizing the irrigation deficits and maximizing the hydropower generation.  The model 

was solved for three inflow scenarios representing dry, normal and wet seasons, with a 

population size of 200 using SBX and polynomial mutation for 1000 generations.  The 

clustering technique was used to sort out the best solution among the many alternatives.  It 

was reported that storage and release policies obtained from MOGA would help the reservoir 

operator in making a suitable decision for different inflow scenarios.  It was concluded that 

the MOGA was very much useful in producing a well defined non-dominated solution set for 

conflicting objectives. 

Kim et al. (2008) developed a piece-wise-linear operating rule for the Soyanggang reservoir 

using the NSGA-II.  Minimizing the shortage index and maximizing the hydropower 

production were the two objectives considered.  Initially, a piecewise-linear operating rule 

consisting of 4 and 5 linear lines was derived using the implicit stochastic optimization from 

100 years of generated inflow.  Then, the coordinates of the linear operating rules were coded 

as chromosomes and optimized using NSGA-II.  The optimal results were further evaluated 

using a simulation model with six years of historical inflow data.  It was reported that the 

piecewise-linear operating rules performed well at the same time satisfied all the constraints. 

Yang et al. (2009) developed a methodology by integrating the MOGA, constrained 

differential dynamic programming (CDDD) and the groundwater simulation model for the 
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conjunctive use of surface and subsurface water in southern Taiwan.  The MOGA was used to 

minimize the fixed costs and pumping cost, generate a pattern of pumping/recharge and 

estimate the non-inferior solutions set.  The shortage index was used to estimate the water 

deficit cost.  The groundwater simulation model was used to handle the complex dynamic 

relationship between the groundwater level and the pumping/recharge pattern.  The CDDP 

model was adopted to distribute the optimal releases among multi-reservoirs.  It was reported 

that the final non-inferior solutions set with fixed costs ranged from 4,578,260,000 N.T. 

dollars to 3,366,480,000 N.T. dollars with the shortage index from 18.29 to 28.02. 

Darshana et al. (2012) used the CROPWAT simulation model and MOGA optimization 

model to derive optimal releases for the irrigation system in Holeta catchment, Ethiopia.  The 

CROPWAT simulation model was used to estimate the crop water requirement and to develop 

water–yield relationships among various crops.  The NSGA-II was used to derive the optimal 

crop planning with the objectives of maximizing the net benefits and minimizing the irrigation 

water requirements.  The NSGA-II was applied with a population size of 150, a multi‐point 

crossover with probability of 0.8, mutation with probability of 0.01 and 3000 generations.  It 

was reported that 23% of water could be saved by varying the crop area.  

Kumphon (2013) applied the MOGA to determine the optimal operation of a multi-reservoir 

system in the Chi River Basin, Thailand. Two competing objective functions such as release 

and storage were considered for the multi-objective analysis.  The GA model parameters 

considered were crossover probability as 0.9, mutation probability as 0.2, population size as 

100 and maximum generation as 300.  It was reported that the predicted values of reservoir 

releases and storage were mostly lower than the actual values.  The reliability of non-inferior 

solutions was determined using the root mean square error.  It was reported that the root mean 

square error were very low for storage (17.05) and release (3.65). 

2.3.2.2 Multi-Objective Differential Evolution Algorithms 

The multi-objective differential evolution (MODE) is also very similar to the MOGA in its 

working principle.  The non-dominated sorting, ranking and selection procedure reported by 

Deb et al. (2002) for MOGA was adopted in MODE along with basic DE working principle.  

However, the application of multi-objective differential evolution (MODE) is very minimal 

compared to NSGA-II and some of the literatures are reviewed in this section.  
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Reddy and Nagesh Kumar (2007) applied multi-objective differential evolution (MODE) 

algorithm for optimizing the operation of Hirakud Reservoir, Orissa, India.  The multiple 

objectives were minimizing flood risk, maximizing hydropower production, and minimizing 

the irrigation deficits in a year, subject to various physical and technical constraints.  Based on 

test problem results, MODE/rand-to-best/1/bin strategy was selected as best and applied with 

a population size of 200, crossover as 0.3 and mutation constant as 0.5 for 500 generations for 

optimizing the reservoir operations.  On comparing the results with NSGA-II, it was reported 

that the MODE resulted in many pareto-optimal solutions in a single run.  The MODE 

algorithm was further extended by Reddy and Nagesh Kumar (2008) to evolve optimal 

strategies for irrigation crop planning of Malaprabha reservoir system for four different 

hydrologic scenarios.  It was reported that the changes in the hydrologic conditions over a 

season has considerable impact on the cropping pattern and net benefits from the irrigation 

system.  From these studies, it was concluded that the MODE algorithm performed better than 

NSGA-II and could be used for optimal irrigation planning also for optimization of reservoir 

operations.   

Adeyemo and Otieno (2009b) used MODE algorithm for deriving optimal cropping pattern 

for Vaalhart Irrigation Scheme in South Africa.  The multiple objectives considered were 

maximizing the total net profit, maximizing the total planning area and minimizing the 

irrigation water.  The DE parameters used were population size 100, crossover as 0.95 and 

scaling factor as 0.5 for 1000 generations.  It was reported that MODE resulted a good trade-

off between conflicting objectives and all the solutions on the Pareto front were good.  

Adeyemo and Otieno (2010) further extended the MODE algorithm to solve multi-objective 

crop planning model with multiple constraints.  The multi-objectives considered in their study 

were minimizing the total irrigation water, maximizing net income and total agricultural 

output.  Four different strategies such as DE/rand/1/bin, DE/rand/2/bin, DE/rand/1/exp and 

DE/rand/2/exp were used.  The parameters such as scale factor, crossover rate and population 

size were fixed as 0.50, 0.95 and 100 respectively based on trial and error.  It was reported 

that MODE with binomial crossover resulted more non-dominated solutions than exponential 

crossover.  It was concluded that MODE is a good algorithm for solving crop planning 

problem especially in water deficient areas. 

Raju et al. (2012) applied MODE algorithm for the irrigation planning of Mahi Bajaj Sagar 

Project, Rajasthan, India using 75% dependable inflow scenario. Maximizing the net benefits, 
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agricultural production and labour employment were the three objectives considered in the 

multi-objective environment.  The K-means cluster analysis was used to reduce non-

dominated alternatives generated by MODE to manageable groups.  Optimal number of 

groups was determined based on the Davies–Bouldin and Dunn’s cluster indices.  It was 

concluded that selection of suitable parameters is necessary for effective implementation in 

real-world planning situations. 

Schardong et al. (2013) derived the optimal operation policy for a complex multipurpose 

reservoir system in Brazil using MODE algorithm and compared with NSGA-II. The 

objectives were minimizing the shortage demand, maximizing the water quality and 

minimizing the pumping cost.  The developed model was applied to the two inflow scenarios 

representing drought period (inflows below historical average) and wet period (inflows above 

historical average).  It was reported that MODE algorithm outperformed NSGA-II and it 

converged closer to optimal solution with better spread coverage of the true Pareto front. 

2.3.3 Multi-Objective Hybrid Evolutionary Algorithms 

The simple MOEAs results in premature convergence and local optimal solution for complex 

non-linear multi-objective optimization problems (Chen et al., 2007; Hakimi-Asiabar et al., 

2009; Huang et al., 2010). In order to overcome this drawback of simple MOEAs, few 

researchers proposed several changes and modification in MOEA to improve their 

performance.  Some of literatures, pertaining to the modified MOEAs otherwise termed as 

hybrid MOEAs are discussed in this section.  

Macro-evolutionary multi-objective genetic algorithm (MMGA) model was developed by 

Chen et al. (2007) to avoid premature convergence of conventional GA.  The developed 

model was applied to derive the rule curves of a multi-purpose reservoir in Taiwan serving 

water supply and hydropower generation.  It was reported that the MMGA yielded better 

spread solutions and converged closer to the true Pareto frontier than the NSGA-II.  Xianfeng 

et al. (2008) proposed a multi-objective chaotic optimization algorithm (MCOA) to solve 

multi-objective non-linear water resources deployment problem.  The proposed algorithm 

magnified the chaotic series generated by logistic mapping to the feasible region and searched 

the best results by iterative comparison.  Based on the results, it was reported that the MCOA 
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is a very useful global optimization algorithm for solving optimal water resources deployment 

and has high efficiency.   

Hakimi-Asiabar et al. (2009) developed a Self-Learning Genetic Algorithm (SLGA) model to 

derive the operating policies of a multi-objective multi-reservoir system.  The SLGA used 

Self-Organizing Map (SOM) and Variable Neighbourhood Search (VNS) algorithms to add 

memory to the GA and to improve its local search accuracy.  The multi-objectives considered 

in the study were supplying water demands, generating hydropower energy and controlling 

water quality in downstream river.  It was reported that, SLGA showed tangible 

improvements in the convergence rate, diversity of solutions, quality of solutions and running 

time.  It was also shown that the SLGA has the capability of solving large scale multi-

reservoir, multi-purpose reservoir operation optimization problems.  The algorithm was 

further improved by Hakimi-Asiabar et al., (2010) and applied to derive optimal operating 

policies of a multi-reservoir system.  It was reported that the SOM has significantly increased 

the number of non-dominated solutions in the last generation.  Also, it was stated that the total 

run-time of the SLGA is less than NSGA-II due to its higher convergence rate. 

Sarker and Ray (2009) proposed a multi-objective constrained algorithm (MOCA) and 

compared the results with the conventional constraint method and NSGA-II for deriving 

optimal crop planning.  The main difference between the NSGA-II and MOCA was in the 

process of population reduction in the selection process.  It was reported that the proposed 

method maintained the end points of the objective space as well as the maximum and 

minimum values of the variables in the process of population reduction and maintained the 

diversity in the population.  It was concluded that the MOCA resulted superior solutions than 

NSGA-II for the non-linear version of the optimal crop planning model. 

A new multi-objective cultured differential evolution (MOCDE) was proposed by Qin et al. 

(2010) for reservoir operation flood control problem.  The multi-objectives considered were 

maximizing the upstream water level and maximizing the discharge to downstream protected 

areas.  The crossover parameter, scale factor and population size was set as 0.2, 0.1 and 50 

respectively and solved for 1000 generations.  On comparing the results with constrained DP, 

it was reported the computational time in MOCDE is much lesser that DP.  Also, it was stated 

that the solutions obtained using MOCDE converged well to the true pareto front and 
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distributed uniformly.  It was concluded that MOCDE can be a viable alternative for 

generating optimal trade-offs in reservoir multi-objective flood control operation. 

Huang et al. (2010) developed a chaotic GA (CGA) model to solve a multi-objective 

optimization of hydropower system with ecological consideration. The multi-objectives were 

converted in to a single objective using constraint method.  In the proposed CGA, chaotic 

variables were introduced using one dimensional logistic method into the optimization 

variables.  The proposed CGA was applied for the optimal operation of a hydroelectric 

reservoir and the results were compared with GA, COA and DP.  Based on the results, it was 

reported that CGA had performed better than other methods and has high search efficiency, 

good convergence performance, faster pace converge to the global optimal solution. 

Wu et al.  (2011) developed a CGA model to optimize the operations of a hydropower 

reservoir considering the ecological flow.  The population was initialized using one 

dimensional logistic mapping method.  The multi-objectives considered were maximizing the 

annual power generation and output of the minimal output stage in the year and minimizing 

the shortage of eco-environment water demand in the reservoir region and downstream river.  

It was reported the model resulted in 8 million kWh annual generation and concluded that the 

model was worthy to derive the optimal operation of hydropower reservoir since it considered 

river ecological flow and promote the sustainable utilization of water resources. 

Shokri et al. (2013) combined ANN and NSGA-II to reduce the number of simulations 

required in EAs for multi-objective optimization problems.  In the proposed algorithm, the 

ANN was used to train and update only the required areas in the decision space.  The 

proposed NSGA-II - ANN methodology was examined using three standard test problems and 

one real-world problem with two objectives namely, meeting the demand and flood control.  

It was reported that the hybrid NSGA-II - ANN algorithm extracted the pareto front with in 

less simulation time compared to simple NSGA II algorithm.  On comparing the results of test 

problem and real world problem, it was concluded that the proposed algorithm showed similar 

performance despite lower computational-time. 

In order to avoid premature convergence, Zhang et al. (2013) proposed chaotic sequences 

based multi-objective differential evolution (CS-MODE) to solve optimal short-term 

hydrothermal scheduling.  The proposed algorithm utilized the elitist archive mechanism to 
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retain the non-dominated individuals and a heuristic two-step constraint-handling technique to 

handle complex equality and inequality constraints.  A new mutation operator was proposed 

by modifying mutation parameter using chaotic sequence generated by three mappings 

methods namely logistic mapping, circle mapping and tent mapping.  On comparing the 

results with simple MODE, it was reported that CS-MODE resulted in lower thermal cost 

with less emission rate.  

2.4 Closure 

A detailed literature review related to the objectives of the present study is reported in this 

chapter.  Both, single objective and multi-objective optimization models pertaining to 

reservoir operation has been reviewed.  From the literature review, it is observed that the 

conventional optimization techniques were widely used to derive the optimal policies till 

recent past.  Especially, LP has been used for deriving the optimal crop planning and NLP is 

used for non-linear hydropower production functions.  Later, DP was used as a suitable 

alternative to NLP.  All these techniques were solved either deterministically or 

stochastically.  In order to consider the vagueness or impreciseness, fuzzy technique has been 

employed in reservoir optimization.  Few authors have modelled the uncertainty in the inflow 

as chance constraint and solved using LP or NLP techniques.  Even though lots of 

modifications have been made to conventional techniques, there exist many difficulties in 

solving large scale complex water resources problems.   

Some of the disadvantages of conventional techniques are time consuming work, iterative 

process, requirement of large storage space, single solutions and may results in local optimal 

solution.  The DP may end up in curse of dimensionality.  Thus, it was reported that the 

conventional techniques are not suitable for multi-objective optimization problems, since it 

results in a single solution and need to be solved repeatedly to evolve a Pareto optimal front.  

For multi-objective optimization, among conventional methods most of the studies adopted 

MOFLP approach for optimal crop planning.  However, most of the studies are for single 

reservoir system and the fuzziness are mostly considered only in the objective function.  To 

overcome the drawbacks of conventional techniques, soft computing optimization techniques 

were developed and applied to solve single as well as multi-objective problems. 
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The evolutionary algorithm based soft computing techniques were recently used by 

researchers for optimizing the reservoir operations.  Among various evolutionary algorithms, 

it is found that GA has been widely used for single objective optimization of water resources 

systems and this indicates wide range of application of GA in reservoir operation.  Another 

evolutionary algorithm namely differential evolution (DE) algorithm is used as an alternative 

to GA because of its simplicity and faster convergence, especially for large scale complex 

problems having more variables.  Among various soft computing techniques, NSGA-II and 

MODE algorithm have been used for optimization of water resources system especially to 

solve multi-objective optimization.  However, it is found that most of the studies reported 

pertain to single reservoir system having no hard binding constraints.  These EAs, search the 

global optimum from the randomly generated initial population.  It has been reported that 

these EAs often suffer the problems of premature convergence and evolve too slowly to reach 

the global optimal solution.  This is especially true, when the initial population is not so good 

for problems having complex hard bound constraints.  Few studies have been reported on 

hybrid optimization algorithms, to overcome this drawback of GA and DE.   

Recently, chaos algorithm has been used by researchers to overcome the convergence 

problem.  In most of the studies, chaos algorithm has been found in generating the initial 

population.  It is reported that combining chaos with evolutionary algorithm improved the 

performance of soft computing techniques.  Application of this chaotic evolutionary algorithm 

is very scanty in reservoir operation and it is not reported for multi-objective multi-reservoir 

system.  In a multi-reservoir system, all the reservoirs need to be considered simultaneously 

for sustainable integrated operation.  In addition, there is a good possibility of intra sub-basin 

water transfer from a reservoir to another system.  This type of temporal transfer of water 

from one reservoir to other reservoir to satisfy the demand of other reservoir, makes the water 

resources system more complicated.  Hence, an integrated planning is required for the optimal 

operation of a multi-reservoir system and also for sustainable crop production, especially in 

developing countries like India.  Also, real life reservoir operation involves multiple 

objectives, which are conflicting in nature.   

 
 



   

Chapter 3 

Materials and Methods 

3.1 General 

A systematic study to derive optimal operational plans of a reservoir necessitates the water 

resources modeller to have a complete knowledge and understanding about its behaviour.  A 

simulation model provides more useful insights about the systems behaviour when its 

operations are simulated for various scenarios for longer period.  Thus, simulation of the 

existing policies of a reservoir is essential for the effective planning and operation (Mays and 

Tung, 2002).  If the simulation results show that the existing reservoir operation policies are 

not adequate to meet the demands, then there is a need to optimize its operation.  

Optimization is the process of finding the best feasible solution subject to various set of 

constraints.  Over the decades, several conventional and soft computing techniques have been 

developed and applied to derive the optimal operational policies for a complex water 

resources system.  The conventional techniques are prone to local optimal solution for 

complex problems having non-linearity, non-convexity, and multi-objectives.  In such cases, 

the evolutionary algorithms are reported as a suitable alternative to conventional techniques.  

The results of the evolutionary algorithm mainly depend on the randomly generated initial 

population that is arrived based on the probabilistic theory.  However, the simple evolutionary 

algorithms are slower in convergence and results in sub-optimal solutions for complex water 

resources problems with hardbound constraints.  Very recently, to overcome this drawback, 

the chaos algorithm is coupled with evolutionary optimization technique (Yuan et al., 2002; 
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Cheng et al., 2008).  Most of the hydrological variables exhibit chaotic behaviour, which is a 

projection that depends upon the initial condition (Sivakumar, 2000).  Hence in the present 

study, the chaos algorithm is coupled with evolutionary algorithm for achieving better 

performance.  In this chapter, development of simulation model and chaos based single and 

multi-objective GA and DE techniques are discussed in detail.   

3.2 Simulation Model 

In spite of development of various optimization techniques, simulation technique remains as a 

primary tool for reservoir planning and management studies in practice (Koutsoyiannis et al., 

2002).  Simulation technique has a wide range of application and remains as an effective tool 

for evaluating a system to improve its performance through the analyses for various scenarios.  

Reservoir simulation is used to determine whether the operation policy of a reservoir system 

is adequate to meet its demands or not.  It is also used to determine reservoir storage 

requirements at the end of the season.  In some cases, before arriving a detailed operational 

plan, the behaviour of the system need to be studied using the standard operating policy 

(SOP).  This will help the modeller to understand the system components, their importance 

and their responses for various input scenarios.  In general, the simulation is accomplished by 

routing the flow through a reservoir using the continuity equation (Mays and Tung, 2002).  In 

the present research, before developing a detailed optimization model, it is aimed to study and 

evaluate the behaviour of two complex multi-reservoir systems using a monthly time step 

simulation model.  The first system is having hydropower production as major objective and 

the second system is having irrigation planning as major objective.   

The multi-reservoir hydropower production is simulated for different operating scenarios, as 

well as for various duration of operation of hydropower plants.  Similarly, the operation of 

another multi-reservoir irrigation system is simulated to study the irrigation releases and intra 

basin water transfer in the system.  The broad steps involved in the development of simulation 

model are given in Figure 3.1.  As a first step, the inputs such as inflow, initial storage and 

various physical parameters are read from the user.  The next step is to estimate the 

evaporation losses, other demands and available storage in the reservoir for releases.  After 

checking the constraints, the releases are made as per standard operating policy (SOP).  After 

estimating the releases, the overflow and final storage levels are estimated.  The procedure is 
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repeated for the next time step and continued until the total duration of the simulation period.  

Further, the output from the simulation model is used to study the behaviour of the system.  

This is achieved by analysing the releases and other outputs through statistical performance 

indicators such as reliability, resilience and vulnerability.  After the SOP, the simulation is 

repeated by using present policy.  

 

 

Figure 3.1. Broad steps of the simulation models used in the present study 

 

Karamouz et al. (2003) reported that reliability is an important indicator for measuring the 

performance of the water resources systems in meeting the demands.  In order to estimate 

dependability of the system, the time and volume reliabilities are estimated.  The time 

reliability is the probability of the state of the system (xt) that occurs in satisfactory state (S) 

(i.e. number of time the demand is satisfied during the total simulation period) (Loucks, 

1997).  Conversely, it is also estimated by deducting the number of failure periods out of the 

total simulation period from one.  Thus, the reliability can be computed as: 

T

F
1Rel n

t      0 ≤ Relt ≤ 1; Fn ≤ T   (3.1) 

 

Read the inflow, initial storage and other parameters for each of the 
reservoirs in the system 

Estimate the evaporation losses, demands and available storage for 
each reservoir 

Release the demand as per SOP and the estimate the deficit, if any 

Estimate the overflow and final storage 

Repeat the simulation till the end period 

Estimate the performance indicators like reliability, resilience and 
vulnerability 
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where Relt is the time reliability, Fn is the number of failure periods during the total 

simulating time period ‘T’.  In addition to the time reliability, volume reliability (Relv) is also 

computed which specifies the volume of the total demand that is released from the reservoir 

during the simulation period.  The volume reliability is given as: 
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where Rt is the release from the reservoir during the time period ‘t’ and Dt is the demand of 

during the time period ‘t’.  For a given system, the volume reliability will be higher than time 

reliability.  Since in time reliability, releases less than the demand during a time period ‘t’ is 

considered as failure for that time period ‘t’, whereas in volume reliability, the releases are 

accounted for calculation.  

Resilience describes how quickly a system recovers from the failure state after the occurrence 

of failure.  Basically, it is a measure of the duration of the system in the unsatisfactory state.  

Resilience is an important indicator to assess the damages caused by droughts and floods 

(Karamouz et al., 2003). It is also the probability that a satisfactory state (S) follows an 

unsatisfactory state (F) (Loucks, 1997).  Thus, resilience is given as: 

 FS|xxPrRes t1t          (3.3) 

Kjeldsen and Rosbjerg (2004) redefined the resilience as the inverse of the mean value of the 

time spent by the system in an unsatisfactory state. It can be given as: 
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where M is the number of failure events and dj is the duration of the failure event ‘j’.   

The maximum resilience is given as 
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In the present study, Resmean and Resmax given in Eq. 3.4 and Eq. 3.5 are used as the resilience 

performance indicators.   

Vulnerability is the measure of magnitude of the failure events that occurred during the 

simulation period.  Kjeldsen and Rosbjerg (2004) simplified the vulnerability measure stated 

by Hashimoto et al. (1982) and redefined the vulnerability as the mean value of the deficit 

events.  Thus, mean vulnerability is expressed as: 
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where vj is the deficit volume of the failure event j.   

The maximum vulnerability is estimated using the following equation: 

 j
j

max vmaxVul          (3.7) 

The behaviour of the system based on its long term operation can be assessed for various 

scenarios of simulation using these indicators.  These three statistical performance indicators 

were widely used by many researchers to assess the performance of reservoir operations 

(Burn et al., 1991; Loucks, 1997; Kjeldsen and Rosbjerg, 2004; McMahon et al., 2006; Jain, 

2009; Umadevi et al., 2013). 

3.3 Chaotic Evolutionary Algorithm for Single Objective 
Optimization 

Recently, the evolutionary algorithms were widely applied to overcome the shortcomings of 

the conventional techniques, particularly in optimizing large scale complex water resources 

systems.  Among various evolutionary algorithms, it reported that genetic algorithm (GA) and 

differential evolution (DE) algorithm are very versatile and more robust.  However, simple 
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GA and DE often suffer the problems of premature convergence and evolving too slowly for 

complex problems with hard bound constraints when initial population is not so good (Li and 

Jiang, 1998; Yuan et al., 2002; Cheng et al., 2008).  Hence, chaos technique is coupled with 

EAs to improve its search and convergence rate.  Caponetto et al. (2003) reported that the 

chaotic sequences increased the performance of evolutionary algorithm and its convergence.  

The chaotic sequences improves the diversity in the population in evolutionary algorithm,  

(Davendra et al., 2010a).   

In the present study, the chaos algorithm is coupled with evolutionary algorithms and is 

applied for optimizing complex multi-reservoir systems having both linear and non-linear 

objective function.  It is proposed to apply chaos algorithm not only in initial population 

generation but also in other optimization steps.  The methodologies of these techniques are 

discussed in this section. 

3.3.1 Hybrid Chaotic Genetic Algorithm 

Genetic algorithm (GA) is a search based optimization technique developed by Holland 

(1975) that works on the principle of natural genetics (Goldberg, 1989; Deb, 2001; Reeves, 

2003).  In contrast to conventional optimization techniques, GA searches the optimal solution 

from a population of possible solutions.  Each potential solution in the search space is 

represented through a set of randomly generated chromosome (also called as string) made of 

discrete units called genes (also called as sub-strings).  Each sub-string controls one or more 

features of the string (Deb, 2001) and the collection of strings is called as population.  The 

fitness of each string in the population is evaluated using an appropriate fitness function to 

select the strings for the next generation.  The selected strings are subjected two genetic 

operators namely crossover and mutation to create a new population for the next generation.  

Thus, new population is created by swapping the sub-strings of the strings.  Then, the 

mutation is applied to reintroduce the genetic diversity that might have lost during 

reproduction and crossover (Reeves, 2003).  This process is continued till the termination 

criteria are reached.   

In the present study, the chaos is coupled with GA to enhance the performance of the search 

and to increase the convergence rate.  Chaos often exists in non-linear systems (Williams, 

1997), and as reported by Li and Jiang (1998), chaos exhibits many good properties such as 
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ergodicity, stochastic properties, and irregularity.  May (1976) proposed a one-dimensional 

logistic mapping equation to generate a chaotic sequence and is given as: 

)1(1 jjj YYY      j = 1, 2, 3…    (3.8) 

where λ is a control parameter, varies between 0 ≤ λ ≤ 4.  The above equation is a 

deterministic without any stochastic disturbance (May, 1976).  However, the long-term 

behaviour of the system changes significantly with the change in λ.  When λ is 4, the system 

becomes chaotic.  In Eq. 3.8, Y1 is the initial chaotic variable randomly generated between 0 

and 1.  From this initial variable (Y1), the chaotic sequence (a series of chaotic numbers) is 

generated using the logistic Eq. 3.8.  A sample chaotic sequence is shown in Figure 3.2, for all 

sequence λ is 4.  Figure 3.2(a) shows a sample chaotic sequence generated using the Eq. 3.8 

with an initial value as 0.70953.  Thus, each variable in the sequence is dependent on initial 

variable and a small change in initial value causes a large difference in its long-time 

behaviour, which is the basic characteristic of chaos.  This can be correlated with the releases 

in reservoir operation, such that the releases in the subsequent months depend on previous 

month releases.  Hence, the decision variables (releases) are generated as chaotic sequence to 

achieve a better initial population.  May (1976) reported that, if the randomly generated initial 

variable (Y1) is equal to 0.25, 0.5, and 0.75, the logistic Eq. 3.8 leads to deterministic series 

rather than a chaotic series.  Figure 3.2(b), (c) and (d) shows that the Eq. 3.8 leads to a 

deterministic series when the initial value is equal to 0.25, 0.50 and 0.75, respectively.  

Hence, the initial variable (Y1) should not be equal to the above mentioned values. 

The working principle of hybrid chaotic GA (HCGA) proposed in the present study is given 

in Figure 3.3.  As seen in Figure 3.3, the chaotic algorithm is used in initial population 

generation, crossover and mutations.  In that way the probabilistic based genetic algorithm 

can be now called as chaos based genetic algorithm.  The step by step procedure adopted in 

the hybrid chaotic genetic algorithm is explained in the following section. 

3.3.1.1 Chaotic Initial Population 

Most of the evolutionary algorithms are probabilistic based search techniques that depend 

upon the initial population.  The two important aspects of the search are (1) initial population 

and (2) population size.   
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Figure 3.2. Illustration of Chaotic Sequence (Arunkumar and Jothiprakash, 2013) 

 

The initial population is often randomly generated within the lower and upper bounds of the 

variables.  The genes of the chromosome in the population can be represented in any specific 

format using bits, floating point numbers, trees, arrays, or any other objects (Sivanandam and 

Deepa, 2007).  The representation of chromosomes as floating point numbers by integers is 

termed a real value encoding.  In real coded GA (RCGA), each string is coded as a floating 

point numbers of the same length as the number of decision variables.  Real value coding is 

more effective than binary coding in terms of precision, efficiency and flexibility (Oliveira 

and Loucks, 1997; Chang and Chen, 1998; Wardlaw and Sharif, 1999; Chang et al., 2005), 

since there is no discretization of decision variable (Haupt and Haupt, 2003).  Dhar and Datta 
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(2008) reported that the solutions obtained using a BCGA were inferior than RCGA for same 

population size and number of generations.  Hence, in the present study, RCGA is used.   

 

 

Figure 3.3. Working principle of Hybrid Chaotic Genetic Algorithm 

 

In the RCGA, each gene is represented as a floating point value that is randomly generated 

within the upper (UBi,j) and lower bounds (LBi,j) of each variables.  Thus, in a real coded 
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genetic algorithm, the sub-strings of each string in a population are initiated (Haupt and 

Haupt, 2003) as: 

jijijijiji LBLBUBYX ,,,,, )(   i = 1, 2… Np;  j = 1, 2,…, Nv;  (3.9) 

where Xi,j is the ‘jth’ sub-string of  ‘ith’ string; Np is the population size and Nv is the number of 

variables.  In the present study, chaos is used in the generation of initial population.  Here, Yi,j 

is the chaotic variable generated using the one dimensional logistic Eq. 3.8.  Thus, the 

generated initial population is a chaotic sequence that exhibits the properties of chaos.  

3.3.1.2 Chaotic Simulated Binary Crossover 

As explained in the previous section, selection of strings makes copies of good strings but 

does not create new ones (Deb, 2001; Sivanandam and Deepa, 2007).  The new population is 

created by randomly crossing the strings in the mating pool with each other and hence the 

crossover is the most important step in GA as the search for global optimal depends on it.  

Generally, in crossover two parent chromosomes from the mating pool are combined together 

to form new chromosomes called offsprings.  The offsprings are expected to inherit good 

genes, since the parents with better fitness values are selected among existing chromosomes 

in the population.  By iteratively applying the crossover operator, genes of good chromosomes 

are expected to appear more frequently in the population, eventually leading to converge to an 

overall good solution.  In order to preserve some good strings selected during the 

reproduction, not all strings in the population are used for crossover (Deb, 2001).  This 

process of retaining some of the parent strings for the next generation without undergoing 

crossover and mutation is known as elitism.  The crossover probability is an important 

parameter, which describes how often crossover is performed.  If crossover probability is 

100%, then all offspring are made by crossover.  If it is 0%, the whole new generation is made 

from exact copies of chromosomes from old population.   

The simulated binary crossover (SBX) developed by Deb and Agrawal (1995) that simulates 

the working principle of single point crossover in BCGA has been modified and used in the 

present study.  In the present study, chaos sequence is introduced into the simulated binary 

crossover (SBX) to maintain the population diversity.  The following steps were performed 

during SBX operation (Deb, 2001).  Deb and Agrawal (1995) used a random number (uj) to 



55 

estimate the spread factor (βj) in the simulated binary crossover.  In the present study, the 

random number (uj) is generated as a chaotic sequence and the spread factor is computed 

using the Eq. 3.10.  
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where ηc is the distribution index and non-negative real number .  Deb (Deb, 2001) reported 

that larger value of ηc produced ‘near-parent’ offsprings and vice versa.  If  X1,j,t and X2,j,t are 

the parent string with jth sub-string in the tth generation, then the offsprings X1,j,t+1 and X2,j,t+1 

for the next generation are computed using the equations 3.11 and 3.12 respectively, 

    tjjtjjtj XXX ,,2,,11,,1 115.0        (3.11) 

    tjjtjjtj XXX ,,2,,11,,2 115.0        (3.12) 

The new two offsprings will be symmetric about the parents to avoid bias towards any 

particular parent.  After crossover, the strings are subjected to mutation.  

 

3.3.1.3 Chaotic Mutation 

The mutation operator introduces random changes in to the characteristic of strings to 

reintroduces the genetic diversity into the population and assists the search to escape from 

local optima (Deb, 2001).  Mutation is generally applied at the sub-string level at very small 

rate.  If there is no mutation, offsprings generated using crossover are directly used for next 

generation without any change.  If mutation is performed, one or more parts of a string are 

changed.  Like crossover probability, the mutation probability is also an important parameter 

and decides how often parts of string is mutated.  The probability is usually taken about 1/L, 

where L is the length of the string or number of decision variables (Deb, 2001).  Different 

forms of mutation are available for different kinds of representation.  Uniform mutation 

(Sharif and Wardlaw, 2000; Jian-Xia et al., 2005; Jothiprakash and Shanthi, 2006, 2009), non-
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uniform mutation (Tospornsampan et al., 2005), normal distribution mutation (Dariane and 

Momtahen, 2009), Gaussian mutation (Chen and Chang, 2007) were the different types of 

mutation used in solving complex water resources problems. 

In the present study, chaotic mutation is proposed to assists the search to escape from the local 

optimal solution.  In the chaotic mutation, randomly chosen substrings are muted with a 

chaotic sequence using Eq. 3.9 to introduce the diversity in the population.  Thus, the chaos 

properties are maintained in the population.  After the mutation process, new population for 

the next generation is created.  This new population is used to evaluate the fitness function in 

the next generation.  The fitness of the newly created population will be evaluated and the 

procedure is continued until the termination criteria are reached.  The termination criteria used 

in this study are given in section 3.5. 

3.3.2 Hybrid Chaotic Differential Evolution Algorithm  

Differential Evolution (DE) algorithm is another type of EA developed by Storn and Price 

(1995) as an improved version of GA for faster convergence (Price et al., 2005).  Feoktistov 

(2006) stated that DE is one of the most powerful tools for global optimization, easy to 

implement and converges faster than GA.  Price et al. (2005) reported that simplicity, easy to 

use, speed and robustness as the advantages of DE.  The key parameters that control the 

search in DE are the population size (Np), crossover constant (CR) and the scale factor (F) 

(Price et al., 2005).  The search for global optimum in DE is dependent on mutation unlike 

GA that is highly depended on crossover.  Similar to GA, DE is also a population based 

technique that searches the global optimum over the generations.  Usually, the initial 

population (group of vectors) is randomly generated within the specified upper and lower 

limits of the variables.  Once the initial population is generated, the fitness of each vector is 

evaluated.  Like other population based methods, the new population for the next generation 

is created using mutation and crossover in DE.  DE mutation adds the scaled difference of two 

randomly selected vectors to the third vector in the population to generate a new trial vector.  

Then, DE employs uniform crossover, also referred as discrete recombination.  The new 

population is created by comparing the trial vectors with the vectors of the old population of 

the same index.  This procedure is repeated until all population vectors have competed against 

a randomly generated trial vector.  Skanderova et al. (2013) studied the effect of different 

random numbers generators on the course of evolution and the speed of convergence to the 
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global solution in DE algorithm.  It was reported that the evolution convergence was faster 

with the random numbers generated using chaos (Davendra et al., 2010b). In the present 

study, a hybrid chaotic DE (HCDE) algorithm is developed by coupling the general DE 

algorithm with chaos technique.  The detailed methodology adopted in developing HCDE 

algorithm is discussed in the following section. 

3.3.2.1 Population Initialization 

DE encodes all variables as floating point numbers.  Price et al. (2005) states that the 

variables are initialized as a real value numbers even if it is discrete or integral, since DE 

internally treats all variables as floating point values regardless of their type and to add 

diversity to their different distributions.  The initial population is generated within the upper 

(UBi,j) and lower limits (UBi,j) of the variables.  Once limits are specified, a random number is 

assigned to each variable of vector within the prescribed range.  In the present study, the 

chaotic logistic mapping method given by May (1976) is used to generate a chaotic sequence 

instead of random numbers to create the vectors to form the initial population.  The Eq. 3.9. is 

used to generate the chaotic initial population.  Thus, the generated initial population is a 

chaotic sequence, which exhibits the properties of chaos.  Then, the fitness of each vector in 

the population is evaluated using a fitness function.  The objective function of the 

optimization problem is used as the fitness function in this study to evaluate the population.  

The new population for the next generation is created using mutation and crossover in DE.   

3.3.2.2 DE Mutation 

Once the population is initialized, DE mutates and recombines the population to produce a 

population of trial vectors.  In particular, DE mutation adds the scaled difference of two 

randomly selected vectors to a third vector in the population to create the trail vector.  The 

third vector may be a random vector or the best vector of old population.  Equation 3.7 shows 

three different, randomly chosen vectors to create a mutant trail vector. 

)( ,3,2,1, trtrtrti XXFXV    i = 1,2,…,Np;  321 rrr   (3.13) 

Where Vi,t is the new trail vector of ith population of tth generation; Xr1,t; Xr2,t; Xr3,t are the 

randomly selected vectors from the population and F is the scale factor.  The scale factor (F) 

is a positive real number that controls the rate at which the population evolves in DE.  Storn 
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and Price (1997) stated that F should not be greater than 1 for effective optimization, even 

though there is no upper limit on F.  Also, the scale factor ensures that the random vectors 

does not duplicate the existing vectors and also shifts the focus of the search from local to 

global optima.  This procedure is repeated until new trail vector of population size (Np) is 

created.   

3.3.2.3 Crossover 

Next to mutation, DE employs uniform crossover which is also referred as discrete 

recombination.  The DE crossover creates trial vectors from the variable that have been 

copied from two different vectors.  Thus, the DE mutation is carried out among the vectors of 

the population where as the crossover is carried out between each variable of the vector in the 

population.  Thus, DE crosses each vector with a mutant vector.  In DE crossover, the user 

defined crossover constant (CR) is compared with uniform random number (rj) generated 

between 0 and 1.  If the generated random number is less than or equal to CR, the variable (vj) 

from the mutant trial vector is selected; otherwise, the variable (xj) from the vector of old 

population is selected to trail vector.  In addition, the trial parameter with randomly chosen 

index, jrand, is taken from the mutant to ensure that the trial vector does not duplicate xi.  

Mathematically it is given as:  
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Once the new trial population is created using mutation and crossover, the fitness of the each 

vector in the trial population is evaluated. 

3.3.2.4 Selection 

The vector for creating new population for the next generation is created by comparing the 

fitness value of trial population vectors with that of the old population vectors of same index.  

If the trial vector (Ui,t) has an equal or lower fitness value (for minimization problem) than 

that of its target vector (Xi,t) of old population, then the trail vector is selected for the next 

generation; else, the old vector is retained in the population for next generation.  The selection 

process is carried out as using the Eq. 3.15.  
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Price et al. (2005) stated that DE algorithm more tightly integrates recombination and 

selection than other EA by comparing each trial vector with the target vector of old population 

from which it inherits parameters.  The process of mutation, crossover and selection is 

repeated until the optimum value is achieved or a pre-specified termination criterion is 

satisfied. 

3.4 Chaotic Evolutionary Algorithm for Multi-Objective 
Optimization 

Most of the real world problems are characterized by the presence of many complementing 

and conflicting objectives.  Therefore, it is necessary to solves them as a multi-objective 

optimization problem rather than a single objective problem to arrive at an optimal trade-off 

between various objectives.  In multi-objective optimization problems, there is often a 

dilemma as how to determine if one solution is better than another.  Deb (Deb, 2001) reported 

that constructing pareto-optimal front is the best way to select the optimal solution for multi-

objective optimization.  This pareto-optimal front is referred as non-inferior solutions that are 

not dominated by other solutions in the search space.  Conventional techniques have 

limitation in handling multi-objective optimization problems and will not generate multiple 

pareto-optimal solutions in a single run.  Generally, the conventional optimization techniques 

convert the multi-objective optimization problem into single objective optimization problem 

to generate only a single pareto-optimal solution.  To generate multiple optimal solutions, the 

conventional optimization techniques have to be used for several times.  To overcome these 

limitations, several multi-objective evolutionary algorithms (MOEA) were reported.  Some of 

them were niched pareto genetic algorithm (NPGA) (Horn et al., 1994), non-dominating 

sorting genetic algorithm (NSGA) (Srinivas and Deb, 1994), pareto archived evolution 

strategy (PAES) (Knowles and Corne, 1999), strength pareto EA (SPEA) (Zitzler and Thiele, 

1999), non-dominating sorting genetic algorithm-II (NSGA-II) (Deb et al., 2002), etc.  The 

main advantage of these techniques over other conventional optimization is that these 

MOEAs can generate the whole pareto-optimal solutions in a single run.  Deb et al. (2002) 

compared NSGA-II with PAES and SPEA for various complex multi-objective functions and 
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reported that NSGA-II outperformed both the algorithms in terms of diverse set of solutions 

and in converging to the true pareto-optimal set. 

3.4.1 Multi-Objective Hybrid Chaotic Genetic Algorithms 

The elitist non-dominated sorting genetic algorithm-II (NSGA-II) developed by Deb et al. 

(2002) is used in the present study to solve the multi-objective optimization problem of 

reservoir operation.  Also, the chaos algorithm is coupled with NSGA-II in each and every 

operation for efficient multi-objective optimization and to increase the convergence rate.  The 

step by step methodology adopted in hybrid chaotic NSGA-II is given in Figure 3.4.  

3.4.1.1 Population Initialization 

Similar to single objective HCGA, the population is initialized as a chaotic sequence using 

one dimensional logistic mapping method developed by May (1976) as discussed in section 

3.3.1.1.  Then, each objective of the optimization problem is evaluated to find fitness of the 

chromosomes in the population.  In multi-objective optimization, the fitness function is more 

difficult to determine (Sivanandam and Deepa, 2007).  In the present study, the objective 

function is used to estimate the fitness value and the population is sorted based on non-

domination into different fronts.  

3.4.1.2 Non-Dominated Sorting 

Once, the objective values are estimated, the strings are sorted based on non-domination.  

Here, the objective values are termed as solutions.  In order to identify solutions of the first 

non-dominated front, each solution is compared with every other solution in the population to 

find if it is dominated.  For each solution ‘X’ in the population, the number of solutions which 

dominates the solution ‘X’ (domination count) and a set of solutions that the solution ‘X’ 

dominates are estimated.  It the domination count is zero for a solution ‘X’, then it is put in the 

first non-dominated front and assigned as rank one.  In order to find the individuals in the next 

non-dominated front, the solutions of the first front are discarded temporarily and the above 

procedure is repeated until all the solutions are sorted in to different fronts.  The solution in 

the first front are completely non-dominated by the other solutions in the population and the 

solutions in the second front are dominated only by the solutions in the first front.  All the 

solutions in a front are ranked based on front in which they belong to.  The solutions in the 

first front are ranked 1 and the solutions in the second front are ranked as 2 and so on.   
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Figure 3.4. Step by step methodology of Chaotic NSGA-II adopted in the present study 
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In case of constrained multi-objective optimization, Deb et al. (2002) reported three more 

criteria for non-dominated sorting.  It is stated that a solution ‘X’ is said to constrained 

dominate a solution ‘Y’, if (i) solution ‘X’ is feasible and solution ‘Y’ is infeasible (ii) both the 

solutions are infeasible, but solution ‘X’ has a smaller overall constraint violation than 

solution ‘Y’ and (iii) both solutions are feasible and solution ‘X’ dominates solution ‘Y’.  Deb 

et al. (2002) described that the above criteria is based on the principle that the feasible 

solution has a better non-domination rank than the infeasible solution.  Thus, all feasible 

solutions are ranked according to their non-domination level based on the objective function 

values.  However, among two infeasible solutions, the solution with a smaller constraint 

violation has a better rank.   

3.4.1.3 Crowding Distance Estimation 

After sorting the solutions into various fronts based on non-domination, the crowding distance 

is estimated, since the solutions are selected based on rank and crowding distance.  The 

crowding distance is assigned front wise and is calculated for each solution to measure how 

close a solution is to its neighbours.  Deb et al. (2002) stated that the basic idea behind the 

crowding distance is to find the euclidian distance between each solution in a front based on 

their objective values in the solution space.  The crowding distance of a solution in a front is 

the average side length of the cuboid formed by connecting the adjacent solutions as shown in 

Figure 3.5.  In Figure 3.5, the dark rounded circles are solutions of first front and hollow 

circles are solutions are second front.  To calculate the crowding distance, the solutions in a 

front are sorted in ascending order based on the objective function value and each objective 

function is normalized before calculating the crowding distance.  For all the solutions, the 

crowding distance (Ix,m) is first initialized as zero.  Then, the solutions with smallest and 

largest objective function values (x-1 and x+4) are assigned an infinite distance value.  For all 

other intermediate solution ‘x’, the crowding distance (Ix) is estimated using the equation (Deb 

et al., 2002):   
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where I(x+1).m and I(x+1).m are the crowding distance of solution ‘x+1’ and ‘x-1’ for the 

objective function ‘m’; fmax,m and fmin,m are the maximum and minimum objective values for 
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the objective function ‘m’.  This calculation is continued with other objective functions.  The 

overall crowding distance value is calculated as the sum of individual distance values 

corresponding to each objective.  In order to maintain the population diversity, the solution 

with higher crowding distance value will have chance for selection for the next generation.  

Thus, the solutions in the boundary are always selected; since, they have higher crowding 

distance value.  The solutions of chromosomes are selected for crossover and mutation using a 

selection operator based on the rank and crowding distance. 

 

Figure 3.5. Calculation of crowding distance 

3.4.1.4 Selection 

The chromosomes for crossover and mutation are selected according to the rank and crowding 

distance.  Deb et al. (2002) developed a crowding distance operator which conducts 

tournament and select the chromosomes based on rank and crowding distance.  In this 

process, two solutions are randomly chosen from the population and are compared.  A 

solution ‘X’ wins the tournament, if (i) solution ‘X’ has better rank than solution ‘Y’ or (ii) if 

both the solutions ‘X’ and ‘Y’ have same rank then the solution having higher crowding 

distance is selected.  In this present study, in addition to these criteria, three more criteria 

discussed in section 3.4.1.2 for constrained multi-objective optimization is also considered 

during the selection process.  The chromosomes of selected solutions are crossed each other to 

generate new chromosomes and are subjected to mutation.  In the present study, the chaotic 

simulated binary crossover discussed in section 3.3.1.2 is used for crossover and the chaotic 

random mutation discussed in section 3.3.1.3 is used for mutation.  Thus, the new population 

is created based on the chaotic simulated binary crossover and chaotic mutation. 
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3.4.1.5 Recombination and Selection 

Once, the new population are created, the fitness values of each objective function are 

estimated.  Both the old and new populations will be combined and thus the population size is 

doubled.  Deb et al. (2002) stated that the elitism is ensured in recombination, since all the 

previous and current best individuals are added in the population.  Again, the population is 

sorted based on non-domination in to various fronts and crowding distance is estimated.  

Figure 3.6 shows the recombination and selection of chromosomes in NAGA-II.  In the 

selection process, both the old population (OP) and new population (NP) are combined and 

sorted in to different fronts (F1, F2, F3, etc) based on non-domination.  The new population 

for the next generation is filled by front wise starting from the first front until the population 

size reaches the defined population size.  If adding all the individuals in a front exceeds the 

defined population size, then remaining individuals in that front are selected based on the 

crowding distance.  In Figure 3.6, all the chromosomes in first three fronts (up to F3) are 

selected and remaining chromosome from F4 is selected based on crowding distance.  The 

unselected chromosomes in F4 will be discarded.  Thus, only the best individuals are selected 

as new population based on rank and crowding distance for the next generation.  Again fitness 

of the new population is evaluated and this procedure is continued till the termination criteria 

are reached.  

 
 

 

Figure 3.6. Recombination and selection of new population 
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3.4.2 Multi-Objective Chaotic Differential Evolution Algorithms 

The chaotic differential evolution (CDE) developed for single objective optimization is 

suitably modified in line with NSGA-II for multi-objective optimization.  In multi-objective 

differential evolution algorithm (MODE) also, the chaos technique is used to generate initial 

population and thus making chaotic multi-objective differential evolution algorithm 

(CMODE).  The non-dominated sorting, crowding distance operator, recombination and 

selection developed by Deb et al. (2002) is incorporated with DE to generate the pareto-

optimal front.  The step by step methodology of the CMODE is given in Figure 3.7.  The 

major difference between the CNSGA-II and CMODE is that crossover influences the search 

process in GA whereas mutation carries the search in DE.  Hence in DE, mutation is 

performed earlier than crossover. 

 

3.4.2.1 CMODE Parameter and Population Initialization 

As a first step in CMODE, the main algorithm is initialized by reading the DE parameters 

such as scale factor, crossover factor, population size, number of objectives and number of 

variables.  Then, the vectors of the population are generated within the upper and lower bound 

of the variables using the chaotic sequence as discussed in section 3.3.2.1.  The fitness of each 

objective of the vectors is estimated using the objective function. 

3.4.2.2 Non-dominated Sorting and Crowding Distance Estimation 

The vectors are sorted into different fronts based on the non-domination and the crowding 

distance.  The non-dominated sorting procedure explained in section 3.4.1.2 and the crowding 

distance estimation procedure explained in 3.4.1.3 is used in CMODE.  

3.4.2.3 CMODE Mutation and Crossover  

After sorting the vectors into various fronts, the DE mutation described in section 3.3.2.2 and 

crossover described in section 3.3.2.3 is performed to create the temporary population.  The 

vectors in first front are non-dominated by other vectors of the population and hence they are 

chosen as best vectors for DE mutation.  If more than one vector is in first front, then the 

crowding distance is compared and the vector having larger crowding distance is marked as 

best vector.  
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Figure 3.7. Step by step methodology of chaotic MODE adopted in the present study 
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3.4.2.4 CMODE Selection 

Once the temporary population is created using mutation and crossover, the CMODE 

selection is carried out to select new population for next generation.  In CMODE selection, 

the criteria used by Deb et al. (2002) for constrained multi-objective optimization is suitably 

combined with DE selection.  In CMODE selection, the objective value of same index of 

temporary and old population is compared and the better one is selected for the next 

generation.  However, in CMODE selection, the same index of temporary population and old 

population is compared based on three criteria.  A vector ‘X’ of temporary population is 

selected over vector ‘Y’ of old population, if (i) vector ‘X’ is feasible and vector ‘Y’ is 

infeasible, or (ii) both vectors ‘X’ and ‘Y’ are infeasible, but vector ‘X’ has less constraint 

violation, or (iii) both vectors ‘X’ and ‘Y’ are feasible, but vector ‘X’ dominated the vector ‘Y’.  

Thus, based on these criteria, the new temporary CMODE population is created. 

3.4.2.5 Recombination and Selection 

After creating a new temporary population using CMODE selection, both the old population 

and new temporary population are combined.  Then, the vectors are again sorted and ranked 

into various fronts based on non-domination criteria.  The crowding distance is estimated for 

the vectors in each front.  The vectors for next generation are selected from the first front 

subsequently until the population size.  This procedure is explained in section 3.4.1.5.  This 

procedure is continued till the termination criteria are satisfied. 

3.5 Termination Criteria 

An optimization algorithm is terminated when all the constraints are satisfied in a constrained 

problem.  However, different objectives may often conflict in a multi-objective optimization.  

In such cases, satisfying one objective may result in an unsatisfactory state of other 

objectives.  Thus, it is not always clear when to stop the search for a better trade-off solution.  

Various termination criteria are available to stop the search and are as follows: 

Number of Generations: Usually, the objective function is not known in advance for a real 

world problem.  Hence, optimization can be terminated after reaching a maximum number of 

generations.  Thus, the algorithm stops when the specified number of generations has evolved. 
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No change in fitness: The algorithm stops if there is no significant improvement in the 

objective function value (fitness value) for a sequence of consecutive generations. 

The termination criterion finally brings the search of the evolutionary algorithm based 

optimization to halt.  In this study, both the number of generations and no change in fitness 

value are used as termination criteria (whichever is satisfied first) to stop the algorithm. 

3.6 Closure 

In this chapter, the methodology and working principle of two evolutionary algorithms, 

namely genetic algorithm and differential evolution algorithm are discussed in detailed for 

single objective and multi-objective optimization to be applied for multi-reservoir systems.  

Both the GA and DE are coupled with chaos.  The chaos is introduced in generating initial 

population, crossover and mutation in genetic algorithm.  In DE, the chaos is used for 

generating only the initial population.  The procedure for coupling chaos algorithm in various 

steps of EA is presented.  The same procedure is extended to multi-objective EA and is 

described in detail.  It is aimed to compare the performance of proposed chaos based EAs 

with that of conventional optimization techniques.  After deriving the optimal solution, it is 

aimed to check the performance of the optimal solution for a longer period using a simulation 

model.  The multi-reservoir system selected as case studies for applying the single objective 

and multi-objective optimization techniques are described in the next chapter. 
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Chapter 4 

Study Area 

4.1 General 

The techniques proposed and discussed in previous Chapter 3 are applied for the optimization 

of complex surface water reservoir systems.  Two complex multi-reservoir systems in 

Maharashtra, India are selected as case studies.  The first one is Kukadi Irrigation Project 

(KIP), a large scale five reservoir irrigation system having multiple command area under 

various canals and irrigating multiple crops.  The second one is Koyna Hydro Electric Project 

(KHEP), a complex multi-purpose multi-reservoir system with hydropower production as a 

major objective.  This system has two reservoirs and four hydropower plants at various 

locations and direction also.  Both these cases are complex in their own way.  In this chapter, 

the details of these study areas, their complexities and data collected are discussed in detail. 

4.2 Kukadi Irrigation Project 

Kukadi Irrigation Project (KIP) is one of the major irrigation projects in Maharashtra 

comprising of five dams namely, Dimbhe, Wadaj, Manikdoh, Pimpalgaon Joge and Yedgaon.  

These five reservoirs combinedly irrigates a total area of 1,46,053 ha in Pune, Ahmednagar 

and Solapur districts of Maharashtra, India (KIPR, 1990).   The geographical location of 

Kukadi Irrigation Project dams and canals are shown in Figure 4.1.  The salient features of 
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Kukadi project dams are given in Table 4.1.  Dimbhe reservoir is the largest reservoir in the 

system having a high live storage followed by Manikdoh.  These two reservoirs get maximum 

inflow and significantly contribute to the water transfer in the system.  The Wadaj and 

Manikdoh are just sufficient reservoirs.  Yedgaon is comparatively smaller capacity reservoir 

having a storage lesser than Dimbhe and Manikdoh, however it has an area about 60% of the 

total area of KIP.   

 

Table 4.1. Salient features of Kukadi Project dams 

Details Dimbhe Wadaj Manikdoh 
Pimpalgaon 

Joge 
Yedgaon Total 

River Ghod Meena Kukadi AR Kukadi  
Gross Storage (106 m3) 382.06 35.94 307.91 217.92 93.43 1037.26 
Dead Storage (106 m3) 28.30 2.83 19.81 125.16 14.15 190.25 
Live Storage (106 m3) 353.76 33.11 288.10 92.76 79.28 847.01 
Irrigable Command 
Area (ha) 

36524 3925 2265 13250 90089 146053 

 

The schematic sketch of reservoirs and ten canals of Kukadi irrigation project are given in 

Figure 4.2 along with the irrigable crop area.  All the four upstream reservoirs are in parallel 

to each other and Yedgaon is in series to all the upstream reservoir.  There are about tens 

canals in the entire KIP system and all are contour canals.  The water is transferred to the 

Yedgaon reservoir through canals and rivers from the upstream reservoir.  The water from 

Dimbhe and Wadaj is transferred through canals and from Manikdoh and Pimpalgaon Joge is 

transferred through rivers. 
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Figure 4.1. Location of KIP dams and canals 
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Figure 4.2. Schematic sketch of canal system of KIP 
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4.2.1 Dimbhe Dam 

Dimbhe is a masonry dam across river Ghod near village Dimbhe with the global coordinates 

of 19° 6′ N latitude and 73° 43′ E longitude and impounds a gross storage of 382.22 × 106 m3.  

Maximum height of the dam is 72.10 m.  It has a spillway portion (five gates of size 12 × 8.50 

m each) with a designed discharge capacity of 2122 m3/s.  The irrigable command area of 

Dimbhe reservoir is 36,524 ha through four canals.  The Dimbhe Left Bank Canal (DLBC) 

takes off directly from the dam and irrigates an area of 2,631 ha.  The Dimbhe Right Bank 

Canal (DRBC) takes off from DLBC at the third kilometre through an aqueduct across Ghod 

River and irrigates an area of 14,549 ha.  The Ghod Branch Canal (GBC) takes off from the 

DLBC and irrigates an area of about 4,330 ha.  The Meena Branch Canal (MBC) also takes 

off from DLBC and irrigates an area of about 15,014 ha.  The balance available water is 

transferred to Yedgaon reservoir through the extended Dimbhe Left Bank Canal ending into 

Yedgaon reservoir.  

4.2.2 Wadaj Dam  

Wadaj is a composite small earth dam across river Meena, impounds a gross storage of 48.13 

× 106 m3.  The global coordinates are 19°8′ N latitude and 73° 54′ E longitude.  Maximum 

height is 26.42 m and length 1830 m.  Its spillway has five gates of size 12 × 5 m each with 

designed discharge capacity of 1426 m3/s.  The Wadaj Right Bank canal (WRBC) takes off 

from the dam and irrigates an area of about 360 ha.  The Meena Feeder Canal (MFC) takes off 

from the Wadaj dam and joins DLBC after irrigating an area of 3,565 ha.  The length of MFC 

is 14 km and discharge capacity is 20.81 m3/s.  The remaining water is fed into the Kukadi 

Project (i.e. Yedgaon reservoir through Meena Feeder Canal).  MFC takes off from left bank 

of Wadaj and joins DLBC before Meena branch canal.  Thus, MBC receives water from both 

Dimbhe as well as Wadaj reservoirs. 

4.2.3 Manikdoh Dam 

Manikdoh is masonry dam across Kukadi river with a gross storage of 308.00 × 106 m3.  The 

maximum height of the dam, above the riverbed is 51.80 m and length of dam is 930 m.  The 

entire storage is proposed to be utilized for irrigation through the Manikdoh Left Bank Canal 

(MLBC) taking off from the left bank of dam and irrigates an area of about 2,265 ha.  The 
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remaining water is transferred to Yedgaon reservoir by letting down the water into Kukadi 

river through irrigation outlet and river sluice of the Manikdoh Dam. 

4.2.4 Pimpalgaon Joge Dam 

Pimpalgaon Joge dam is a mixed type, the main dam is of earthen type and spillway is in 

concrete.  The dam is constructed on Ar River, a tributary of the Kukadi river near village 

Pimpalgaon Joge and a bund near continental divide line.  It is an earthen dam, with gated 

spillway on left bank saddle.  Maximum height of dam is 28.97 m and length is 1490 m.  

Pimpalgaon Joge dam has two irrigation canals, Pimpalgaon Joge Left Bank Canal (PLBC) 

and Pushpawathi canal (PC).  The PLBC takes off directly from Pimpalgaon Joge dam and 

irrigates an area of 11,510 ha.  The PC irrigates an area of about of 1,740 ha.  The excess 

water is transferred to Yedgaon reservoir by letting down the water in the Pushpawathi river 

which joins the Yedgaon reservoir.   

4.2.5 Yedgaon Dam 

The Yedgaon dam is constructed across the Kukadi river at Yedgaon, with a gross capacity of 

93.45 × 106 m3.  The KLBC is the main canal in the system takes off directly from the 

Yedgaon dam and irrigates an area of about 90,089 ha, largest area under a canal in this 

integrated system.  The command area under KLBC is high and Yedgaon dam alone cannot 

satisfy the irrigation requirement.  Hence, the excess water from all the upstream reservoirs is 

transferred to Yedgaon dam through canals and rivers to cater the irrigation needs of 

command area under KLBC (Siddamal and Birajdar, 2012).  This shows that KLBC receives 

water from upstream reservoirs. 

4.2.6 Data Pertaining to KIP 

The data required for the study has been collected from the Office of the Executive Engineer, 

Kukadi Irrigation Circle 1, Naranyangaon, Maharashtra, India.  The data includes salient 

hydraulic features of the dam and canals, reservoir inflow, evaporation losses, area-capacity-

elevation table, water demand data and operational records of the reservoir.  All these data are 

collected for eleven years from 2001 to 2012, since the last dam is completed in the year 

2000.  The command area details include cultivable area under each canal, type of crops 

grown in the command area.   
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The historical inflow into each reservoir of KIP is given in Figure 4.3.  From the figure, it is 

observed that the inflow into the reservoir is intermittent and occurs only during the monsoon 

period every year.  It is also observed that the inflow to Dimbhe and Manikdoh is 

comparatively higher than other reservoirs in the system.  

 

Figure 4.3. Historical monthly inflow into Kukadi project dams 
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4.2.7 Canal System and Existing Cropping Pattern 

The particulars of canals and water requirement for each canals is given in Table 4.2.  The 

KLBC is the longest canal in the system, followed by DRBC.  The average annual rainfall in 

this area varies from 3810 mm to 5080 mm.  The cropping pattern practiced in the Kukadi 

command area is given in Figure 4.4.  Kharif and Rabi are the two major seasons during 

which crops are cultivated.  During Kharif season crops such as Jowar Hybrid, Bajra Hybrid, 

Paddy drilled, Groundnut, Chillies, and Vegetables are grown.  The major crops cultivated 

during Rabi season are Wheat, Jowar Local Rabi, Jowar Hybrid Rabi, Jowar Rabi (Rattoon), 

Peas, Vegetables/Onion and Potatoes.  In the present study, the irrigation water requirement 

of different crops is estimated using FAO Modified Penman Method and by incorporating the 

transmission losses as suggested by KIPR (1990).  Thus, the net water requirement at the 

canal head is estimated by considering the field efficiency as 65% and transmission efficiency 

as 75% (KIPR, 1990).  It is observed that the water requirement during Rabi season is higher 

than Kharif season, due to non-availability of rainfall.  Also, the water requirement at KLBC 

is much higher compared to other canals due to larger area.  Hence, transfer of water from 

upstream reservoirs to Yedgaon reservoir is very much necessary, which makes the system 

complex.  The net water requirements of each crop for different months are given in Table 

4.3.  Among Kharif crops, Paddy requires more water for irrigation.  Similarly, Wheat 

requires more water among Rabi crops.  The water requirement during the Rabi season is 

higher than Kharif season, particularly during the months of November and December.  

Table 4.2.  Particulars of canals of KIP and water requirement 

Canal Dam Length 
Canal 

Carrying 
Capacity 

Irrigation 
Area 

Water requirement at canal 
head* 

Kharif Rabi Total 

  
(km) (m3/s) (ha) (106 m3) 

DRBC Dimbhe 132.00 8.42 14549.00 38.25 66.64 104.89 
DLBC Dimbhe 55.00 35.00 2631.00 6.92 10.23 17.15 
GBC Dimbhe 13.00 2.50 4330.00 11.40 16.33 27.73 
MBC Dimbhe/Wadaj 40.00 8.68 15014.00 39.45 58.32 97.77 
WRBC Wadaj 10.00 0.20 360.00 0.93 1.40 2.33 
MFC Wadaj 14.00 21.05 3565.00 9.37 13.86 23.23 
MLBC Manikdoh 23.50 1.31 2265.00 5.94 8.80 14.74 
PLBC Pimpalgaon 71.00 6.65 11510.00 30.26 44.71 74.97 
PC Pimpalgaon 16.00 0.90 1740.00 4.57 6.74 11.31 
KLBC Yedgaon 249.00 52.12 90089.00 236.73 350.00 586.73 
Total   623.50   146053.00 383.82 577.03 960.85 
*As per Project Design 
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Figure 4.4. Existing cropping pattern in the command area of Kukadi Irrigation Project 
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Table 4.3. Net water requirement (mm) of each crop during different time period 

 
Crop Jun July Aug Sep Oct Nov Dec Jan Feb Mar Apr May Total 

K
ha

ri
f 

Jowar Hybrid 76.00 115.00 139.00 – – – – – – – – – 330.00 
Bajra Hybrid – 162.00 84.00 – – – – – – – – – 246.00 
Paddy Drilled 100.00 165.00 147.00 106.00 27.00 – – – – – – – 545.00 
Groundnut 184.00 77.00 136.00 – – – – – – – – – 397.00 
Chilles – 141.00 87.00 97.00 182.00 50.00 – – – – – – 557.00 
Vegetables – 96.00 101.00 79.00 – – – – – – – – 276.00 

R
ab

i 

Wheat – – – – – 149.00 176.00 242.00 113.00 – – – 680.00 
Jowar Local  – – – 16.00 90.00 165.00 206.00 124.00 – – – – 601.00 
Jowar Hybrid – – – 18.00 121.00 189.00 99.00 – – – – – 427.00 
Jowar Rattoon – – – – 137.00 181.00 98.00 1.00 – – – – 417.00 
Peas – – – – 56.00 123.00 194.00 8.40 – – – – 381.40 
Vegetables/Onion – – – – – 130.00 156.00 211.00 – – – – 497.00 
Potatoes – – – – – 156.00 196.00 197.00 – – – – 549.00 

 
Total 360.00 756.00 694.00 316.00 613.00 1143.00 1125.00 783.40 113.00 0.00 0.00 0.00 5903.40 
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4.2.8 Complexities of KIP 

At the outset, KIP looks like a self sufficient system, (i.e.) inflow is more or less equal to 

demand.  But the type of crops grown in the command area is not same as the project crop and 

thus the demand is increasing.  Secondly, the spatial and temporal variation in the availability 

calls for a better optimal solution.  Thus, the complexity of the KIP is such that there is a need 

to find intra basin temporal distribution of water availability over space.  Most of the 

command is under KLBC due to topology.  However, the water availability at Yedgaon is 

very less.  Hence, transfer of water from other reservoirs to Yedgaon is very much need and 

calls for an optimal water transfer, both spatially and temporally.  It is also to be taken care 

such that the water transfer from one reservoir should not affect the cropping area under its 

own command area and at appropriate time, since more water could not be stored at Yedgaon 

due to its smaller capacity.  Altogether, the spatial and temporal water availability and 

multiple crops, multi-reservoir systems calls for an appropriate cropping pattern under 

different canals and operating policies for appropriate spatial and temporal water transfer. 

4.3 Koyna Hydro Electric Project 

The Koyna Hydro Electric Project (KHEP) is considered as the case study for the model 

having single objective optimization of a multi-reservoir system.  The KHEP is located in the 

Sahyadri ranges of Maharashtra, India as shown in Figure 4.5.  The Sahyadri ranges serves as 

a continental divide with 1000 m high head at Krishna river basin and suddenly tapers down 

to Arabian sea from peak within 50 km on Western side (Thatte, 2012).  This has lead to the 

design and operation of KHEP by utilizing the naturally available head for hydropower 

production (KHEP, 2005).  KHEP has four powerhouses and integrates the operation of two 

reservoirs, namely Koyna reservoir and Kolkewadi reservoir.   

4.3.1 Koyna Dam 

The Koyna Dam is one among the 23,000 large dams in the world and is situated across 

Koyna river with a global co-ordinate of 17°24'N latitude and 73°45'E longitude.  The Koyna 

river is a major tributary to river Krishna.  The Koyna river rises at Mahabaleshwar at an 

altitude of about 1,600 m above mean sea level (MSL) in Sahyadri hill range, Maharashtra 
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and flows north to south direction almost parallel to the Arabian Sea.  The catchment is 

elongated, hilly with steep slopes with an area of about 891.78 km2.  The average width of the 

catchment is 14 km and average length is 64 km with a hill slope of 1 in 100.  The average 

annual rainfall is around 5000 mm and this water is impounded by the Koyna Dam.   

 

Figure 4.5. Location of KHEP and its powerhouses 
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The salient features of Koyna dam is given in Table 4.4.  The gross storage capacity of the 

reservoir is 2797.40 × 106 m3.  The water spread area at full reservoir level is about 13% of 

the catchment area.  The inflow to the Koyna dam is estimated based on reservoir levels and 

outflow (Thatte, 2012).  The Koyna reservoir has three powerhouses, two on Western side, 

and one on Eastern side at the foot of the dam.  Although Koyna dam is basically built for 

generating hydropower, it also serves irrigation purposes like most of the other dams in the 

subcontinent (Thatte, 2012).  The periodically release of water (usually twice in a month) 

from the Koyna reservoir made the Koyna as a perennial river, whereas its tributaries are 

mostly ephemeral (Naik et al., 2001).  Thus, various lift irrigation schemes have been 

developed along the Koyna river and sugarcane is the main crop cultivated in the area.  Other 

crops grown include upland paddy, sorghum, wheat and pulse.  The irrigation releases are on 

the Eastern side of the reservoir, which has fertile land as compared to barren exposed rock 

covers, and undulating terrain on Western side, where the major powerhouses are located.   

4.3.2 Kolkewadi Dam 

The Kolkewadi dam is located in the Konkan region of Maharashtra, India with global co-

ordinates of 17.29°N and 73.39°E.  The salient features of Kolkewadi dam is given in Table 

4.4.  The length of the dam is 497 m and height is 66.3 m.  The gross storage capacity of 

Kolkewadi reservoir is 36.22 × 106 m3 and the net storage is 11.22 × 106 m3 (KHEP, 2005).  

The average annual rainfall near the dam site is about 4000 mm in the catchment area of about 

25.40 km2.  However, the Kolkewadi reservoir receives most of its inflow from tail water of 

powerhouse of Koyna reservoir and regulates the flow to another powerhouse (PH III).  The 

discharge from PH III joins the Washisti river and finally confluences with the Arabian sea 

through Boladwadi nalla. 

4.3.3 Powerhouses of KHEP 

The KHEP has four powerhouses and their details are given in Table 4.5.  The locations of the 

powerhouses are given in Figure 4.5.  The Koyna stage – I was the first station with 4 × 70 

MW capacity.  The second stage with a capacity of 4 × 80 MW was designed with the same 

head works.  Thus, the headrace tunnel, surge well pressure shafts and tailrace are common 

for these two stages and hence both Stage I and Stage II is together referred as PH I.   
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Table 4.4. Salient features of Koyna and Kolkewadi Dams 

Details Koyna Reservoir Kolkewadi Reservoir 
River Koyna Boladwadi Nalla 

Purpose 
Hydropower and 
partly for Irrigation 

Hydropower 

Catchment area (km2) 891.78  25.40 
Length of Dam (m) 807.72 497.00 
Gross Storage (106 m3) 2797.40 36.22 
Net Storage (106 m3) 2652.40 11.22 
Dead Storage (106 m3) 145.00 25.00 
Water Spread at FRL (km2) 115.35 1.67 
Maximum Height above river bed (m) 85.35 56.80 
Maximum Height above foundation (m) 103.02 66.30  
MWL (KRL) (m) 659.90  137.16 
FRL (KRL) (m) 657.90 135.40 
MDDL (KRL) (m) 609.60 130.10 
KRL – Koyna Reduced Level, KRL = MSL + 9.43 m 

The stage – IV (henceforth referred as PH III) is the major powerhouse in KHEP with a 

capacity of 1000 MW and is also on the Western side of the reservoir.  The water released 

through tailrace from PH I and PH III is collected in a pickup dam named Kolkewadi 

reservoir which acts as balancing reservoir to maintain head Stage III of KHEP.  The Stage III 

at Kolkewadi dam is having a capacity of 4 × 80 MW (hereafter Stage III is referred as PH II).  

The Koyna Dam Power House (KDPH) (hereafter referred as PH IV) was constructed with a 

capacity of 2 × 20 MW to utilize the head available in the reservoir and to generate 

hydropower through irrigation releases and further flow towards Eastern side to join river 

Krishna.  It is worth mentioning that irrigation releases through PH IV flows East side of the 

dam, the flow from PH I, PH II and PH III flow towards Western side of the dam and 

confluences in the Arabian Sea without any further utilization.  The full installed capacity of 

all the powerhouses supplying base power in the grid is not sufficient to cope up with the peak 

demand of Maharashtra during morning and evening peak hours of every day.  Hence, the 

demands during peak hours are satisfied by converting the hydropower stations into peaking 

stations (Thatte, 2012).  All the powerhouses in the system are peak stations and are operated 

only for producing the peak demands.  However, the power production at the dam foot 

powerhouse (PH IV) is incidental, which generates hydropower only through irrigation 

releases.   
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Table 4.5. Details of powerhouses of KHEP (Jothiprakash and Arunkumar, 2014) 

Powerhouses Stages I & II 
(PH I) 

Stage III 
(PH II) 

Stage IV 
(PH III) 

KDPH 
(PH IV) 

Dam Koyna Kolkewadi Koyna Koyna 

No. of Turbines 4 + 4 4 4 2 

Headrace tunnel Length (m) 748 4,351 4,225  –  

Maximum discharge (m3/s) 164.00 170.00 260.00 67.96 

Design head (m) 475 490 109.70  500.00 59.00 

Generator (MW) 280 
(4 × 70) 

320 
(4 × 80) 

320  
(4 × 80) 

1000  
(4 × 250) 

40  
(2 × 20) 

Speed (rpm) 300 375 214 375 250 

 

4.3.4 Data Pertaining to KHEP 

The data pertaining to KHEP has been collected from the Sub-divisional Engineer office, 

Koyna Dam Maintenance section, Koyna Nagar and Kolkewadi Dam Maintenance section, 

Alore, Maharashtra, India.  The data such as reservoir details, working table of the reservoir, 

catchment details, various demand details, powerhouse details and reservoir operation policies 

were collected from Irrigation Department, Koyna Dam Circle, Pune, Maharashtra, India.  

The historical monthly inflow into Koyna and Kolkewadi reservoir is given in Figure 4.6.  

Figure 4.6(a) shows the historical observed monthly inflow time series to the Koyna reservoir 

for 49 years from 1961.  It is observed there is a cyclic pattern in the observed data.  A 

maximum inflow of 6748.37 × 106 m3 has been observed during the year 2005.  The average 

annual inflow in to Koyna reservoir is estimated as 4172.06 × 106 m3 over the 49 years data.  

Figure 4.6(b) shows the historical observed monthly inflow time series to the Kolkewadi 

reservoir.  The average annual monthly inflow in to Kolkewadi reservoir is 9.69 × 106 m3.  

Both the reservoirs are intermittent in nature and receive inflow during monsoon periods only.   

The historical end month storage level of Koyna reservoir is given in Figure 4.7.  It is found 

that there is large variation in storage level over the period of time.  Initially, the storages are 

very less and over the period of time, Koyna reservoir attained maximum storage levels 

frequently.  It is also evident from the figure that the reservoir has reaches the minimum 

storage level during very few months.  It is observed that the storage is very high during 

recent time period, continuously reaching the maximum storage level every year.  Thus, the 

reservoir is always maintained at high storage levels. 
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Figure 4.6. Historical monthly inflow into (a) Koyna reservoir and (b) Kolkewadi reservoir 
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Figure 4.7. Historical end month storage of Koyna reservoir 
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4.3.5 Complexities in the KHEP System 

Usually, hydropower releases are termed as non-consumptive, since the water can be used for 

some other purpose after power generation, mostly for irrigation.  However in KHEP, the 

releases to major powerhouses and irrigation are in the opposite direction which makes the 

operation of the system very complex.  Also, the water diverted to the major powerhouses 

(Western side) will never meet back the originated river.  This means that the water diverted 

for hydropower production never meets Krishna river, but are let into Arabian sea.  Diverting 

large quantity of water to the major powerhouses on the Western side of the reservoir resulted 

in serious disputes among different stakeholders, especially from Eastern side.  Thus, Krishna 

Water Dispute Tribunal (KWDT) was constituted to resolve the water sharing disputes in 

Krishna basin and has issued order in sharing the maximum water to hydropower generation 

and irrigation from Koyna reservoir.  Since, the power releases and irrigation releases are 

separate and in opposite direction, the KWDT limited the diversion of large quantity of water 

towards the Western for power production (KWDT, 2010).  Apart from this sociological 

issue, there also exist conflicts among the powerhouses, since they are located at different 

levels and have different capacity of power generation.  The same quantities of releases to 

different powerhouses will produce varying hydropower due to varying net head and capacity.  

Thus, there is a need to optimally utilize the available water both for hydropower generation 

and irrigation for maximizing their benefits.   

4.4 Closure 

In this chapter the details of the study area, Koyna Hydro Electric Project and Kukadi Project 

are given.  Koyna hydroelectric project is one the major hydroelectric project of India.  It 

caters the peak power demand need of Maharashtra state.  Kukadi project is one of the major 

irrigation projects of Maharashtra state.  It comprises the integrated operation of five 

reservoirs.  Thus, these study area are having greater importance in their specific purposes.  

Hence, there is much scope to optimize the operation of these reservoirs. 

 



   

Chapter 5 

Single and Multi-Reservoir Inflow Prediction Model 

5.1 Kukadi Irrigation Project 

Multi-reservoirs located in the upper reaches of the Bhima river basin have been studied for 

concurrent forecasting of future inflows for both full year and seasonal conditions.  The 

models are developed using common time period of data; because the reservoirs are 

constructed and started operating at differ time periods.  Initially, conventional as well as AI 

techniques are applied to predict inflow into each reservoir independently.  Secondly, 

conventional stochastic and ANN models are developed for multi-variate predictions into the 

multi-reservoirs concurrently without considering the exogenous inputs like upstream 

releases, surplus and import from adjacent watershed.  This multi-reservoir system imports 

water from adjacent watersheds during Kharif and Rabi seasons which are considered in the 

final part of the study for concurrent predictions into the reservoirs.  Model Tree (MT) and 

Genetic Programming (GP) techniques are not applied to these multi-variate concurrent 

predictions due to inherent limitations.  

All the models are developed using daily data except stochastic concurrent model.  The 

conventional stochastic modelling is limited to monthly inflow data series, because for daily 

data it is felt increasingly difficult to manage the curse of dimensionality.  Yedgaon reservoir 

is the distribution reservoir from where all the demands are met.  Thus, apart from one-day-

ahead prediction, multi-time-step-ahead prediction is also attempted for this reservoir.  The 
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concurrent prediction of inflows into the multi-reservoirs including multi-step-ahead 

prediction for Yedgaon reservoir is the major aim of this part of study.  

5.1.1 Multi-reservoir System Considering Each Reservoir Independently 

Fairly large amount of research has been reported on application of conventional stochastic 

and AI techniques for a single reservoir system without explicitly indicating whether the case 

study reservoir considered is reservoir in series or in parallel, imports water from adjacent 

watersheds or receives surplus from adjacent watersheds.  Thus, as a first step in this multi-

reservoir case study, all the three reservoirs are considered as individual reservoir system and 

conventional stochastic model and AI techniques are applied to predict the future inflows into 

each reservoir separately.  The daily time series data available for Manikdoh, Pimpalgaon 

Joge and Yedgaon reservoirs are 1st June 1985 - 31st May 2008, 1st June 2000 - 31st May 

2008 and 1st June 1977 - 31st May 2008 respectively.  Since the data available is for different 

time periods, the common time period data availability from 1st June 2000 - 31st May 2008 is 

considered for modelling.  Thus the total length of daily data used is for 8 years.  For this data 

length, different modelling techniques such as stochastic and AI techniques like ANN, MT 

and GP are applied.  The raw data has not performed better and hence data scaling, 

normalization and transformations such as logarithmic, exponential and square root are tried.  

The performance is found to be poor which may be due to large length of zero values in the 

data set, large variation in observed data points and also may be due to lack of pattern in the 

inflow of the reservoir in series.  For daily inflow data series, the data pre-processing in the 

form of moving average (MA) (window, k = 3) performed exceptionally better and hence the 

same data pre-processing technique is used in the multi-reservoir study also.  Out of 8 years of 

inflow data 70% (1937) of data is used for training and 30% (831) is used for testing for all 

the techniques.  Three separate daily inflow prediction models (one for each reservoir) are 

built with full year and seasonal data to predict next days’ inflow for each inflow series.  

5.1.1.1 Auto Regressive Integrated Moving Average (ARIMA) Model  

Multi-reservoir prediction is first dealt by considering each reservoir system as an individual 

system by developing three different models for bench marking purpose.  Daily full year and 

seasonal models are evolved for the reservoirs using ARIMA modelling approach.  Standard 

evaluation measures are then assessed for better model in each category and shown in Table 

5.1.  The table indicates that ARIMA(2,1,2) and ARIMA(1,1,1) are the better models for pre-
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processed full year data and seasonal data respectively.  It is found that the performance of the 

models are poor indicating that efficient modelling approach is required for daily inflow 

predictions into independent reservoir system.  

Table 5.1. Summary of performance of independent daily ARIMA models with data pre-

processing during training and testing period 

Phase 
Error 

criteria 

ARIMA(2,1,2) model with full year 
data 

ARIMA(1,1,1) model with 
seasonal data 

Manikdoh 
Pimpalgaon 

Joge 
Yedgaon Manikdoh 

Pimpalgaon 
Joge 

Yedgaon 

Training 

MSE,  
1012 m6 

4.632 5.259 4.392 4.224 3.406 3.277 

MAE,  
106 m3 

1.155 1.500 1.278 1.003 0.774 0.530 

R 0.650 0.672 0.664 0.712 0.658 0.731 

AIC 5599 5380 6480 3944 4137 5135 

Testing 

MSE,  
1012 m6 

5.647 6.037 5.392 5.224 5.236 5.237 

MAE,  
106 m3 

4.155 3.590 3.278 2.130 2.174 1.210 

R 0.502 0.534 0.571 0.662 0.658 0.671 

AIC 5305 5017 5744 5303 6020 5737 

 

5.1.1.2 ANN Model   

The same pre-processed data series for same number of inputs used in ARIMA model has 

been used in AI models also.  A simple MLP model is first developed for full year and 

seasonal data by optimizing hidden nodes while training the network with BP algorithm and 

hyperbolic-tangent as transfer function.  The network is trained for several epochs for 

achieving best performance.  The dynamic time tagged recurrent network (TLRN) has 

exhibited good performance for daily data and is thus tried in this case.  The summary of best 

ANN model for full year and seasonal data showing various performance measures is 

displayed in Table 5.2 during training and testing.  

For full year data, MLP ANN(2-2-1) has shown better performance for Pimpalgaon Joge and 

Yedgaon reservoir inflow prediction with R = 0.771 and 0.899 respectively during testing, 
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while, TLRN has modelled Manikdoh reservoir with R = 0.660 much inferior to the seasonal 

data models.  Seasonal data ANN(2-2-1) model trained with TLRN with 2 inputs having 

gamma memory structure displayed good error statistics for Manikdoh, Pimpalgaon Joge and 

Yedgaon reservoirs with R = 0.954, 0.971, 0.960 respectively during testing of the network.  

Considering all the performance measures including MSE = 0.708, 0.452, 0.730 and MAE = 

0.514, 0.465, 0.689, the seasonal data model performance is better than full year data model 

performance, thus it can be seen that the large number of zero inflow values in full year could 

not be modelled better even with sophisticated TLRN network using MA data pre-processing.  

The next AI technique of MT is then tried in order to improve the performance, especially for 

the full year data. 

Table 5.2 Summary of performance of independent daily ANN models with data pre-

processing during training and testing period 

Phase 
Error 

criteria 

ANN(2-2-1) models with full year 
data 

ANN(2-2-1) models with seasonal 
data 

Manikdoh 
(TLRN) 

Pimpalgaon 
Joge 

(MLP) 

Yedgaon 
(MLP) 

Manikdoh 
(TLRN) 

Pimpalgaon 
Joge 

(TLRN) 

Yedgaon 
(TLRN) 

Training 

MSE,  
1012 m6 

2.218 0.794 1.521 0.554 0.494 0.958 

MAE,  
106 m3 

0.718 0.378 0.792 0.515 0.494 0.752 

R 0.751 0.902 0.914 0.972 0.971 0.972 

Testing 

MSE,  
1012 m6 

2.182 3.098 0.924 0.708 0.452 0.730 

MAE,  
106 m3 

0.635 0.427 0.670 0.514 0.465 0.689 

R 0.660 0.771 0.899 0.954 0.971 0.960 

 

5.1.1.3 Model Tree (MT) Model   

The MT models developed are pruned and smoothed till SDR reduced substantially.  The 

summary of best MT models for full year and seasonal data during training and testing is 

displayed in Table 5.3.  With 2 antecedent inflow series i.e. MT 2 model with 2 input data has 

shown improved performance over ANN model for full year data (R = 0.910, 0.880, 0.936, 

MSE = 0.699, 1.341, 0.602 and MAE = 0.198, 0.278, 0.306) whereas seasonal MT 2 model 
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has not shown any improvement over ANN model.  The higher MSE values indicate that the 

peak inflows are not captured by MT 2 model for seasonal data.  However, the MT 2 model 

has improved the performance of full year data over the corresponding ANN model.    

Table 5.3 Summary of performance of independent daily MT models with data pre-

processing during training and testing period 

Phase 
Error 

criteria 

MT 2 models with full year data MT 2 models with seasonal data 

Manikdoh 
Pimpalgaon 

Joge 
Yedgaon Manikdoh 

Pimpalgaon 
Joge 

Yedgaon 

Training 

MSE, 
1012 m6 

0.516 0.523 0.990 0.939 1.320 1.295 

MAE, 
106 m3 

0.234 0.250 0.399 0.415 0.507 0.487 

R 0.949 0.939 0.943 0.958 0.920 0.925 

Testing 

MSE, 
1012 m6 

0.699 1.341 0.602 1.994 1.501 1.295 

MAE, 
106 m3 

0.198 0.278 0.306 0.455 0.456 0.487 

R 0.910 0.880 0.936 0.878 0.913 0.925 

 

5.1.1.4 LGP Model   

To achieve higher accuracy in peak inflow prediction, the well-proven GP modelling 

technique is taken up for independent reservoir inflow prediction for full year and seasonal 

data.  LGP 2 model with 2 inputs has resulted in the best performance measures, R is ranging 

from 0.957 to 0.979, MSE and MAE is in the range of 0.167 to 0.509 and 0.169 to 0.428 

respectively.  All the statistics displayed in Table 5.4 are best for LGP 2 model as compared 

to ANN and MT models.  

Time series and scatter plot during testing for LGP 2 model, which exhibited best results for 

full year and seasonal data for the three reservoirs, is shown in Figure 5.1(a) – (f) and Figure 

5.2(a) – (f) respectively.  From Figure 5.1 and Figure 5.2 it is very clear that whether the data 

is full year or seasonal, LGP 2 model is performing better and it can be clearly seen that even 

though there is a pattern in Manikdoh and Pimpalgaon Joge reservoirs, there is a changing 
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pattern for controlled inflow into Yedgaon reservoir.  However, the LGP model has predicted 

even this data also accurately for all magnitudes of observed inflows. 

Table 5.4 Summary of performance of independent daily LGP models with data pre-

processing during training and testing period 

Phase 
Error 

criteria 

LGP 2 models with full year data LGP 2 models with seasonal data 

Manikdoh 
Pimpalgaon 

Joge 
Yedgaon Manikdoh 

Pimpalgaon 
Joge 

Yedgaon 

Training 

MSE, 
1012 m6 

0.176 0.212 0.692 0.378 0.439 0.930 

MAE, 
106 m3 

0.205 0.226 0.358 0.336 0.354 0.571 

R 0.983 0.976 0.961 0.981 0.975 0.973 

Testing 

MSE, 
1012 m6 

0.167 0.294 0.414 0.325 0.381 0.509 

MAE, 
106 m3 

0.169 0.270 0.273 0.301 0.297 0.428 

R 0.977 0.976 0.957 0.979 0.975 0.970 

 

Even though there is inter-dependency among the reservoirs and the time step considered is 

short, AI models have predicted better.  From the results, it is found that LGP model has 

performed exceptionally better for different reservoirs at different time steps.  It is to be 

remembered that data pre-processing plays a vital role in achieving the good performance.  

Thus, it may be concluded that if the time step is shorter (daily), LGP 2 model with data pre-

processing technique may be used in real life rather than stochastic and other AI techniques 

such as ANN and MT.   

The results of independent AI models are convincing from the point of view of individual 

dam authority.  However, regional water manager in a reservoir system is more concerned 

about concurrent inflow prediction.  Thus the second case is of concurrent inflow prediction 

without considering the exogenous inputs. 
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Figure 5.1(a) – (f) Time series and scatter plot of independent daily full year LGP 2 

model during testing period 
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Figure 5.2(a) – (f) Time series and scatter plot of independent daily seasonal LGP 2 

model during testing period 

5.1.2 Concurrent Multi-reservoir Model without Exogenous Inputs   

As a second case, the concurrent inflow prediction into multi-reservoirs are aimed at by 

considering only antecedent inflow into the reservoir and without considering exogenous 

inputs (upstream releases and import from nearby watersheds).  In this case, concurrent inflow 

prediction with stochastic AR(p) model could not be carried out for daily time step due to the 
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curse of dimensionality.  In daily ANN models: concurrent multi-reservoir inflow case, a 

multi-input multi-output (MIMO) structured ANN model has been developed using monthly 

as well as daily inflow data and are discussed.  In this modelling, tri-variate time series 

corresponding to the three reservoirs are analysed utilizing their interdependences for one-

step-ahead forecast.  

5.1.2.1 Concurrent Monthly Full Year Stochastic AR(p) Model 

The AR(p) models up to p = 10 are developed for monthly full year data to predict multi-

reservoir inflows.  Summary of the performances of four AR(p) models are presented in Table 

5.5.  It is noticed that all the models showed very poor predictions, some models have shown 

negative correlation thereby indicating the in-capabilities in modelling complex multi-

reservoir monthly data by AR(p) models.  However, AR(5) model showed slightly better 

prediction, and the scatter plot of the observed and predicted inflows into the three reservoirs 

is displayed in Figure 5.3(a) – (c).  The data points available for modelling full year inflow for 

a period of 8 years is very less (96).  This may be another reason for poor performance of the 

AR(p) model.  The seasonal data points are still less i.e. only 40 data points in the inflow 

series.  Therefore, the concurrent monthly seasonal inflow prediction could not be carried out.  

In order to model the monthly data better the non-linear ANN technique is attempted. 

Table 5.5 Summary of performance of concurrent monthly full year AR(p) models 

during testing period 

Model 
 

Manikdoh Pimpalgaon Joge Yedgaon 

MSE, 
1012 m6 

MAE, 
106 m3 

R 
MSE, 

1012 m6 
MAE, 
106 m3 

R 
MSE, 

1012 m6 
MAE, 
106 m3 

R 

AR(1) 2085 21.143 -0.046 4057 32.891 0.013 8280 68.605 0.111 

AR(2) 2036 19.41 -0.08 3984 31.386 -0.077 7542 64.294 0.281 

AR(5) 1850 4.97 -0.167 3449 19.323 -0.064 4402 33.234 0.394 

AR(8) 5315 -39.251 -0.119 7373 -21.103 -0.135 14393 -73.906 -0.201 

 

5.1.2.2 Concurrent Monthly Full Year ANN Model 

Concurrent ANN prediction models for transformed monthly full year data are developed 

using MLP network.  Predictive capability of TLRN with different memory structures is 

checked for the complex data series as the standard MLP has shown poor predictions.  
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Initially, all the models are developed with antecedent inflow into the three reservoirs as the 

input.  Thus, ANN models with multiples of three input nodes indicate that there are no 

exogenous inputs.  However, the performances are poor.  In order to improve the 

performance, the river releases from upstream reservoirs are added as the inputs.  Thus ANN 

model with sum of multiples of 3 and multiples of 2 is the number of nodes used in the input 

layer.  Monthly seasonal models are not developed due to less number of data points for 

model training and testing.  The model was trained using 70:30% of data length for training 

and testing monthly data sets.  ANN architecture for feed forward MLP and feed back TLRN 

with one or more hidden layers and varying number of nodes are developed. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.3 (a) – (c) Scatter plots of concurrent monthly full year stochastic AR(5) model 

during testing period 

 



 

97 
 

The effect of hidden neurons in the network is identified by various trials.  Number of training 

cycles is varied from 1000 to 30,000 in order to achieve better results.  The ANN 

configuration which has resulted in minimum MSE is selected for further model evaluation.  

As stated earlier, TLRN which is better suited for time series prediction has exhibited better 

error statistics as compared to standard MLP networks.  The performance measures for the 

better models resulting from logarithmic-transformed data are summarized in Table 5.6. 

Table 5.6 Summary of performance of concurrent monthly full year ANN models with 

data-transformations during testing period 

Model 

Manikdoh Pimpalgaon Joge Yedgaon 

MSE, 
1012 m6 

MAE, 
106 m3 

R 
MSE, 

1012 m6 
MAE, 
106 m3 

R 
MSE, 

1012 m6 
MAE, 
106 m3 

R 

ANN(10-4-3) 
{MLP} 

3113 30.654 0.325 5265 42.768 0.215 5302 52.996 0.277 

ANN(7-4-4-4-3) 
{TLRN with time delay memory} 

975 21.335 0.747 1613 24.963 0.694 2265 32.376 0.602 

ANN(8-4-4-3) 
{TLRN with time delay memory} 

1144 22.694 0.756 1845 23.987 0.642 2866 35.517 0.476 

ANN(7-6-4-3) 
{TLRN with time delay memory} 

896 21.077 0.704 1855 25.29 0.630 2259 32.135 0.623 

ANN(5-4-4-3) 
{TLRN with time delay memory} 

1196 22.716 0.718 1764 26.552 0.705 2410 31.421 0.575 

ANN(10-4-3) 
{TLRN with time delay memory} 

3190 31.842 0.276 5523 44.137 0.131 5999 52.053 0.182 

ANN(10-4-3) 
{TLRN with time delay memory} 

1967 30.913 0.456 3211 35.962 0.362 2897 32.618 0.454 

ANN(15-10-3) 
{TLRN with time delay memory} 

2492 33.328 0.366 4624 49.785 0.193 6156 57.255 0.203 

ANN (15-15-3) 
{TLRN with gamma memory} 

1311 25.34 0.779 3558 38.50 0.495 7835 67.59 0.266 

ANN(15-15-3) 
{TLRN with Laguerre memory} 

1896 23.265 0.785 2727 36.129 0.582 5669 57.377 0.382 
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One can observe that only TLRN with time delay memory structure could capture the pattern 

in the observed inflows.  All these models are similar and perform satisfactorily.  Concurrent 

predictions for the three reservoirs with ANN(7-6-4-3) model exhibited better correlation with 

the observed series 0.704, 0.630 and 0.623 respectively.  Seven input variables and two to 

three hidden layers with few hidden nodes are required to learn the complex and non-linear 

observed data sets.  The other statistics are also close to the best statistics.  This model has 3 

inflows and 2 lag upstream releases as the input.  In continuation with the model selection, 

scattered plots of the predicted inflows with the corresponding observed series are displayed 

for each reservoir in Figure 5.4.  From Figure 5.4 it can be seen that ANN model is also 

poorly performing with full year data, except Manikdoh reservoir.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.4(a) – (c) Scatter plot of concurrent monthly full year ANN(7-6-4-3) model with 

data-transformation during testing period 
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The reason may be due to shorter length of data since the number of pattern is only 8, thus 

making the network incapable.  Thus from previous runs, it is found that the raw data, scaled 

and transformed data could not be modelled well.  The concurrent predictions with MLP and 

TLRN networks for monthly full year data, pre-processed with MA are disclosed and the 

performance of this model is displayed in Table 5.7.  Concurrent predictions with MLP and 

TLRN networks for monthly seasonal data have displayed average performances as compared 

to corresponding full year predictions.  

Memory structures of time delay and gamma are combined with TLRN resulting in better 

performance as compared to traditional MLP models.  ANN(5-4-3) model with TLRN and 

time delay memory structure has shown better results for seasonal data in most of the error 

statistics as shown in Table 5.7 as compared to other models.  In this case also, traditional 

MLP model has not resulted in better fit but TLRN networks having time delay and gamma 

memory structures has resulted better than transformed-data ANN model as well as data pre-

processed seasonal models.  Amongst all the models, ANN(3-4-3) model having an input of 

only previous time step inflow into a reservoir has predicted the concurrent inflow into the 

reservoir better as shown in Table 5.7.  The time series and scatter plot of observed and 

predicted inflow during testing period is shown in Figure 5.5(a) – (c). 

 

Table 5.7 Summary of performance of concurrent monthly ANN models with data pre-

processing during testing period 

Performance of monthly full year inflow data 

Model 

Manikdoh Pimpalgaon Joge Yedgaon 

MSE, 
1012 m6 

MAE, 
106 m3 

R 
MSE, 
1012 m6 

MAE, 
106 m3 

R 
MSE, 
1012 m6 

MAE, 
106 m3 

R 

ANN(3-3-3) 
{MLP} 

1287 20.351 0.468 2442 29.670 0.471 2921 32.771 0.546 

ANN(3-3-3) 
{TLRN with time delay memory} 

427 12.493 0.863 1189 17.139 0.780 1984 30.401 0.773 

ANN(3-2-3) 
{TLRN with gamma memory} 

652 16.081 0.799 889 17.908 0.870 1027 24.546 0.695 

ANN(3-3-3) 
{TLRN with gamma memory} 

270 10.281 0.929 1390 17.543 0.763 1779 33.582 0.588 

ANN(3-4-3) 
{TLRN with gamma memory} 

222 9.469 0.937 1164 15.327 0.804 678 20.575 0.830 
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Performance of monthly seasonal inflow data 

Model 

Manikdoh Pimpalgaon Joge Yedgaon 

MSE, 
1012 m6 

MAE, 
106 m3 

R 
MSE, 
1012 m6 

MAE, 
106 m3 

R 
MSE, 
1012 m6 

MAE, 
106 m3 

R 

ANN(5-4-3) 3756 49.928 0.642 8034 75.329 0.120 13629 85.261 0.621 

ANN(5-4-3) 
{TLRN with time delay memory} 

827 17.399 0.808 2259 30.708 0.602 2109 34.448 0.407 

ANN(5-3-3) 
{TLRN with gamma memory} 

1788 33.266 0.660 1894 30.742 0.670 6779 53.130 0.356 

ANN(5-4-3) 
{TLRN with gamma memory} 

2733 41.470 0.534 1520 27.912 0.775 5135 47.857 0.537 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.5(a) – (c) Scatter plot of concurrent monthly full year ANN(3-4-3) model with 

data pre-processing during testing period 
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5.1.2.3 Concurrent Daily ANN Model 

From the previous section, it is seen that multi-reservoir inflows with monthly time-stepped 

stochastic and ANN models could not predict the concurrent reservoir inflow better (because 

of lesser length of data set).  Hence the prediction is tried with daily data set.  The stochastic 

daily model could not be carried out due to the curse of dimensionality.  The daily full year 

and seasonal ANN models are developed using 70% of data length for training and 30% of 

data length for testing.  The inputs to the network are the lagged inflows and upstream 

releases to predict one-day-ahead inflow.  ANN models are developed using MLP and TLRN 

networks with varying hidden nodes.  Training is stopped when the pre-determined minimum 

error is reached.  The effect of hidden neurons in the network training is identified by various 

trials.  

From the numerous models developed with MLP and TLRN networks, it is found that with 

logarithmic-transformed full year data, both the models exhibited average and similar 

performances.  The performance of sigmoid transfer function on data sets containing varying 

degrees of noise and non-linearity are tried.  The number of hidden layers and hidden nodes 

are changed and found that the addition of hidden layer only increases the complexity of the 

network (increasing the number of parameters) and does not necessarily enhance the model 

performance.  

Numerous models developed with standard MLP and TLRN networks for logarithmic-

transformed seasonal data are trained with varying algorithms like BP, BPTT, LM and CG.  

Both the networks resulted in good performance during training period but showed average 

error statistics during validation tests.  Randomization of one peak value in testing set is done 

with training set for improvement in peak inflow value.  This resulted in over-estimation 

during testing.  Being the daily seasonal data, there are large variations in the magnitudes of 

data points.  In order to reduce these variations, normalization of the data set is done prior to 

feeding the data into the network.  The data is normalized before training and testing between 

0 and 1 by dividing all the inflow values with maximum inflow.  For comparison of the 

models, four better models in this case are short-listed during validation and summary is 

displayed in Table 5.8.  All the models displayed are developed with logarithmic-transformed 

data except ANN(3-14-3) model which is normalized data model.  



 

102 
 

Table 5.8 Summary of performance of concurrent daily ANN models with data 

transformation during testing period 

Performance of daily full year inflow data 

Model 
Manikdoh Pimpalgaon Joge Yedgaon 

MSE, 
1012 m6 

MAE, 
106 m3 

R 
MSE, 
1012 m6 

MAE, 
106 m3 

R 
MSE, 
1012 m6 

MAE, 
106 m3 

R 

ANN(5-10-3) 
{TLRN with gamma memory} 

1.864 0.557 0.707 6.612 0.700 0.416 2.510 1.050 0.665 

ANN(5-15-3) 
{TLRN with gamma memory} 

2.006 0.546 0.686 6.730 0.728 0.381 3.508 1.181 0.542 

ANN(5-24-3) 
{MLP} 

1.422 0.404 0.784 6.300 0.61 0.430 1.276 0.638 0.846 

ANN(5-30-3) 
{MLP} 

1.362 0.450 0.799 6.500 0.570 0.419 1.721 0.678 0.801 

Performance of daily seasonal inflow data 

Model 
Manikdoh Pimpalgaon Joge Yedgaon 

MSE, 
1012 m6 

MAE, 
106 m3 

R 
MSE, 
1012 m6 

MAE, 
106 m3 

R 
MSE, 
1012 m6 

MAE, 
106 m3 

R 

ANN(5-10-15-3) 
{TLRN with gamma memory} 

5.885 1.031 0.637 5.8 1.096 0.568 4.987 1.181 0.712 

ANN(5-10-5-4-3) 
{MLP} 

3.652 1.174 0.769 5.508 1.469 0.619 3.149 1.315 0.842 

ANN(5-25-3) 
{MLP} 

3.183 0.793 0.786 4.862 1.059 0.606 3.23 1.063 0.792 

ANN(3-14-3) 
{MLP} 

3.279 0.717 0.780 4.927 0.846 0.650 5.518 0.971 0.746 

 

In the first glance, all the seasonal data models are performing similar to full year data 

models.  The simple MLP ANN(3-14-3) model (normalized data) has better performance 

amongst all the models developed and the time series and scatter plot of this model is shown 

in Figure 5.6(a) – (f).  The scatter plot showed that the higher inflows are over-predicted 

resulting in lowering of R statistics for this model.  Thus it may be concluded that in case of 

concurrent inflow prediction into multi-reservoir system also, ANN models require better data 

pre-processing technique rather than identifying the best ANN structure.  In this case, the MA 

series with k = 3 has been derived for individual reservoirs in the multi-reservoir system 
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which constitutes as the input to the ANN model.  It is found from the numerous models 

developed with MLP and TLRN type of networks that by using pre-processed inputs both the 

networks exhibited improved performances.  The number of hidden nodes is also reduced 

considerably thereby reducing the complexity of the model.  Best performance of each type of 

network selected and is shown in Table 5.9.  

 
 

 
 

 
Figure 5.6(a) - f) Time series and scatter plot of concurrent daily seasonal ANN(3-14-3) 

model with data transformation during testing period 
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Table 5.9 Summary of performance of concurrent daily ANN models with data pre-

processing during training and testing period 

Performance of daily full year inflow data 

Data 
phase 

Error 
criteria 

ANN(6-5-3) 
{MLP} 

ANN(3-3-3) 
{TLRN with gamma memory} 

Manikdoh 
Pimpalgaon 
Joge 

Yedgaon Manikdoh 
Pimpalgaon 
Joge 

Yedgaon 

Training 

MSE, 
1012 m6 

1.615 1.152 1.542 0.512 0.362 0.976 

MAE, 
106 m3 

1.096 0.812 0.939 0.436 0.388 0.679 

R 0.880 0.879 0.931 0.950 0.959 0.952 

Testing 

MSE, 
1012 m6 

2.257 1.654 1.654 0.696 1.091 0.652 

MAE, 
106 m3 

1.172 0.819 0.871 0.435 0.438 0.567 

R 0.768 0.855 0.875 0.910 0.897 0.936 

Performance of daily seasonal inflow data 

Data 
phase 

Error 
criteria 

ANN(6-4-3) 
{MLP} 

ANN(6-3-3) 
{TLRN with gamma memory} 

Manikdoh 
Pimpalgaon 
Joge 

Yedgaon Manikdoh 
Pimpalgaon 
Joge 

Yedgaon 

Training 

MSE, 
1012 m6 

3.069 4.814 38.480 0.573 0.543 1.130 

MAE, 
106 m3 

1.247 1.987 5.915 0.513 0.576 0.843 

R 0.779 0.879 0.861 0.971 0.971 0.973 

Testing 

MSE, 
1012 m6 

4.078 4.423 36.703 0.745 0.635 1.011 

MAE, 
106 m3 

1.376 1.879 5.756 0.486 0.573 0.813 

R 0.794 0.864 0.723 0.950 0.966 0.954 
 

At a glance, it is found that the full year and seasonal daily data concurrent models are 

performing equally better with R value in the range of 0.950 during testing and 0.970 during 

training.  However, TLRN with gamma memory with lesser hidden nodes i.e. ANN(6-3-3) 

model using seasonal data has resulted in better forecasting for all the error statistics.  The 

corresponding network configuration is shown in Figure 5.7.  The results indicate that one-

day antecedent inflow in each reservoir along with only 3 hidden nodes (as against 14 nodes 

with data-transformed model) is necessary to build the model for next day’s inflow into each 
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reservoir.  The R value during testing period for these reservoirs are 0.950, 0.966 and 0.954 

respectively and their other error statistics (MSE = 0.745, 0.635, 1.011 and MAE = 0.486, 

0.573, 0.813) are also best thus indicating better forecasting of low, moderate and peak 

inflows.  The time series and scatter plot of observed inflows with ANN(6-3-3) model 

predicted inflow is shown in Figure 5.8(a) – (f) respectively and the figure shows that the 

higher inflows are accurately predicted by ANN(6-3-3) model for all the three reservoirs.  

Thus, current and one day antecedent inflow together with recurrent nature of dynamic 

TLRN, BPTT algorithm and short-term gamma memory is found suitable to model the highly 

complex, non-linear, daily full year and seasonal inflows into the multi-reservoirs, without 

exogenous inputs also. 

 

 
 

Figure 5.7 Architecture of concurrent daily seasonal ANN(6-3-3) model 
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Figure 5.8(a) – (f) Time series and scatter plot of concurrent daily seasonal ANN(6-3-3) 

model with data pre-processing during testing period 

5.1.3 Concurrent Multi-reservoir ANN Model with Exogenous Inputs  

In the previous section, concurrent inflow into multi-reservoirs has been predicted without 

considering the exogenous inputs and is satisfactorily accepted by the watershed manager.  

But a policy maker needs a model which can concurrently predict the future inflow 

considering the exogenous variables such as releases from upstream reservoirs, surplus and 

continuous import from adjacent watershed reservoirs as the input to the model.  Thus the 
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modeller needs to develop a comprehensive model which can predict the future inflow as 

accurately as possible by considering the exogenous inputs.  Thus in the present case the one-

step-ahead inflow into the multi-reservoirs are predicted using the ANN technique.  Only 

ANN modelling is included in prediction as the conventional stochastic model involves large 

parameter posing analytical and computational problem.  The ANN model is developed by 

including the inputs of imports from adjacent Dimbhe and Wadaj reservoir basins (IMt) 

during Kharif and rabi seasons (1st June - 29th February) in addition to inflow into the three 

reservoirs and corresponding releases to downstream reservoir.  Surplus release from 

Chilhewadi (St) during monsoon season (1st July - 30th September) to Yedgaon reservoir is 

also an input node to the ANN model.  

The output node consists of one-step-ahead inflow into the three reservoirs and in another 

case, it is one-step-ahead inflow into upstream reservoirs (reservoirs in parallel) and three-

step-ahead inflow into downstream reservoir.  It is to be noted that the travel time from one 

reservoir to another is less than one day.  Thus the releases and antecedent releases from 

upstream reservoirs are also considered as input to the network.  Since the time of travel is 

less than a day from upstream to downstream there is no dispute due to delay time of release 

and inflow realization in the downstream reservoir.  Three-day-ahead prediction into the 

future is considered only in case of Yedgaon reservoir in order to study the combined effect of 

releases and surplus from the upstream and adjacent reservoirs and its own independent 

inflow.  Such a study for upstream reservoirs is not necessary as the inflow is un-controlled in 

these reservoirs.  The concurrent one-step-ahead inflow and concurrent multi-step-ahead 

inflow prediction are discussed separately in the following sections. 

5.1.3.1 Concurrent Daily One-step-ahead ANN Model 

In this case, the network includes additional input nodes due to import and surplus from 

adjacent watersheds i.e. IMt and St, together with reservoir inflows and releases I1t, I2t, I3t, 

R1t, and R2t for full year and seasonal data.  The MLP and TLRN networks with trial and 

error procedure are configured and trained to forecast one-step-ahead inflow in the reservoirs.  

The large number of zero inflow values in the time series adds to the complexity of ANN 

modelling which is overcome with data pre-processing of raw daily inflows as seen in the 

previous section.  The performance indicators given in Table 5.10 shows the best models 

developed by MLP and TLRN networks from number of trials using pre-processed full year 
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and seasonal data.  Hidden nodes are varied from 1 - 20 by trial and error till best 

configuration is achieved.  The TLRN model is performing very well for the case of full year 

as well as seasonal data series than the MLP network.  It is also seen that MLP model could 

not perform better even with large hidden nodes.  The dynamic nature of TLRN has shown 

remarkable improvement over MLP model in both training and testing phases with lesser 

number of hidden nodes.  

The gamma memory of TLRN for ANN(7-4-3) model has remembered the inflows’ past with 

efficiency and modelled the daily full year inflow quite good.  The input for this network 

consists of inflow in these three reservoirs, releases from upstream reservoirs and surplus as 

well as import from adjacent watersheds.  The ANN architecture for ANN(7-4-3) model is 

given in Figure 5.9.  Forecasting in all the reservoirs showed good performance with R = 

0.917, 0.912 and 0.925 during testing phase for Manikdoh, Pimpalgaon Joge and Yedgaon 

reservoirs respectively (Table 5.10).  The MSE and MAE measures are also better (MSE = 

0.596, 0.913, 0.802 and MAE = 0.359, 0.357, 0.654) for this model. 

Table 5.10 Summary of performance of concurrent daily one-step-ahead ANN models 

during training and testing period 

Phase 
Error 
criteria 

ANN(7-19-3) 
{MLP} 

ANN(7-4-3) 
{TLRN with gamma memory) 

Manikdoh 
Pimpalgaon 
Joge 

Yedgaon Manikdoh 
Pimpalgaon 
Joge 

Yedgaon 

Performance of daily full year data 

Training 

MSE, 
1012 m6 

1.455 1.139 1.283 0.450 0.415 0.802 

MAE, 
106 m3 

0.572 0.423 0.659 0.388 0.309 0.669 

R 0.841 0.857 0.926 0.954 0.950 0.961 

Testing 

MSE, 
1012 m6 

1.314 2.026 0.859 0.596 0.913 0.802 

MAE, 
106 m3 

0.487 0.458 0.589 0.359 0.357 0.654 

R 0.810 0.796 0.915 0.917 0.912 0.925 

Performance of daily seasonal data 

Phase 
Error 
criteria 

ANN(7-7-3) 
{MLP} 

ANN(7-6-3) 
{TLRN with gamma memory) 
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Manikdoh 
Pimpalgaon 
Joge 

Yedgaon Manikdoh 
Pimpalgaon 
Joge 

Yedgaon 

Training 

MSE, 
1012 m6 

2.119 2.132 3.815 0.869 0.801 1.801 

MAE, 
106 m3 

0.731 0.706 1.023 0.627 0.616 1.002 

R 0.887 0.866 0.879 0.959 0.957 0.951 

Testing 

MSE, 
1012 m6 

2.129 5.078 2.056 1.339 2.673 1.813 

MAE, 
106 m3 

0.611 0.807 0.812 0.694 0.794 0.952 

R 0.859 0.771 0.866 0.915 0.878 0.896 

 

 
 

Figure 5.9 Architecture of concurrent daily full year one-step-ahead ANN(7-4-3) model  
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The performance of ANN(7-4-3) model is further compared with observed series with the 

help of time series and scatter plot as shown in Figure 5.10(a) – (f).  Time series and scatter 

plots of inflow predictions with this model show that all the points are satisfactorily mapped 

for the three reservoirs except slight under-predictions of highest inflows of upstream 

reservoirs.  The reason may be that these peak magnitudes are not there in training data set.  

Thus it may be concluded that daily multi-reservoir inflow could be predicted very well by 

considering the exogenous inputs. 

 
Figure 5.10(a) – (f) Time series and scatter plot of concurrent daily full year one-step-

ahead ANN(7-4-3) model during testing period 
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5.1.3.2 Concurrent Daily Multi-step-ahead ANN Model 

The multi-time-step-ahead inflow forecasting into Yedgaon reservoir will give the dam 

authority, few-days-ahead warning of the sudden floods due to controlled and un-controlled 

inflows into Yedgaon reservoir.  Since the Yedgaon reservoir acts as a distribution reservoir, 

it is also found necessary to develop a multi-step-ahead forecasting into the reservoir.  Multi-

step-ahead forecasting using ANN is a challenging and complex task which tries to make 

predictions several steps into the future.  In full year data series, there are large number of 

zero inflow values in the time series, the input nodes (inclusive of exogenous inputs) are more 

and the output nodes are higher i.e. 5  thereby leading to complex, non-linear ANN model.  

Mainly, MLP and TLRN networks are trained with different input nodes and hidden nodes to 

forecast three-step-ahead inflow in case of Yedgaon reservoir and one-step-ahead inflow in 

case of Manikdoh and Pimpalgaon reservoirs.  Momentum and CG learning rule with sigmoid 

as well as hyperbolic transfer functions are tried for training the network.  Hidden nodes are 

varied from 1 - 15 by trial and error till best ANN configuration is achieved.  

Figure 5.11 shows the best MLP and TLRN networks resulting from number of trials for full 

year and seasonal data.  From the Table 7.11 in this case also TLRN network is performing 

better than MLP network with full year as well as seasonal data input.  The resulting best 

MLP and TLRN models for seasonal data viz. ANN(7-11-5) and ANN(7-5-5) model are 

shown in Figure 5.11.  These models have shown sufficient capabilities in forecasting the 

daily seasonal data especially the multi-step-ahead inflows in Yedgaon reservoir.  However, 

TLRN network could perform better because non-linearity exists within the nodes and within 

the layers.  That is the reason TLRN learns better with the same number of input nodes.  

Among the TLRN models trained using full year and seasonal data, full year ANN(7-6-5) 

model showed improved performances during both training and testing phases.  It is also 

found that TLRN network performance has not changed with additional number of output 

nodes.  

The input nodes consist of I1t, I2t, I3t, R1t, R2t, IMt, and St. Except for Pimpalgaon Joge 

reservoir, the other two reservoir forecasting have shown improvement with MSE = 0.553, 

MAE = 0.361, R = 0.925 for Manikdoh reservoir and MSE = 0.606, MAE = 0.443 and R = 

0.939 for Yedgaon reservoir during testing phase (Table 5.11).  The two-day-ahead 

forecasting (I3t+2) is fairly good with R = 0.884 but has deteriorated for three-day-ahead 
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forecasting (I3t+3) with R = 0.760 as seen in Table 5.11.  This may be due to the travel time 

of released water from upstream reservoirs to downstream reservoir being less than a day, 

leading to less correlation with previous time stepped releases. 

 

Table 5.11 Summary of performance of concurrent daily multi-step-ahead ANN models 

during training and testing period 

Phase 
Error 
criteria 

ANN(7-15-5) {MLP} 
ANN(7-6-5) {TLRN with gamma 
memory) 

Manikdoh 
Pimpalgaon 
Joge 

Yedgaon Manikdoh 
Pimpalgaon 
Joge 

Yedgaon 

1 day-
ahead 

1 day-
ahead 

1 
day-
ahead 

2 
day-
ahead 

3 day-
ahead 

1 day-
ahead 

1 day-
ahead 

1 
day-
ahead 

2 
day-
ahead 

2 
day-
ahead 

Performance of daily full year inflow data 

Training 

MSE, 
1012 
m6 

1.331 1.118 1.099 1.773 4.022 0.373 0.449 0.565 0.906 3.103 

MAE, 
106 m3 

0.479 0.403 0.453 0.636 1.025 0.355 0.323 0.467 0.601 1.031 

R 0.855 0.860 0.937 0.896 0.744 0.963 0.945 0.967 0.951 0.814 

Testing 

MSE, 
1012 
m6 

1.139 2.067 0.711 0.951 2.49 0.553 1.098 0.606 1.243 2.293 

MAE, 
106 m3 

0.412 0.451 0.360 0.503 0.808 0.361 0.413 0.443 0.615 0.925 

R 0.833 0.789 0.924 0.897 0.760 0.925 0.905 0.939 0.884 0.760 

Performance of daily seasonal inflow data 

Phase 
Error 
criteria 

ANN (7-11-5) {MLP} 
ANN(7-5-5) {TLRN with gamma 
memory) 

Manikdoh 
Pimpalgaon 
Joge 

Yedgaon Manikdoh 
Pimpalgaon 
Joge 

Yedgaon 

1 day-
ahead 

1 day-
ahead 

1 
day-
ahead 

2 
day-
ahead 

3 day-
ahead 

1 day-
ahead 

1 day-
ahead 

1 
day-
ahead 

2 
day-
ahead 

3 
day-
ahead 

Training 
MSE, 
1012 

2.092 2.141 3.460 7.066 10.088 1.202 0.753 2.870 6.144 9.044 
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m6 

MAE, 
106 m3 

0.762 0.724 0.917 1.395 1.653 0.767 0.574 1.119 1.456 1.701 

R 0.888 0.866 0.891 0.761 0.631 0.946 0.957 0.919 0.803 0.682 

Testing 

MSE, 
1012 
m6 

1.957 5.107 2.116 4.553 6.141 2.040 2.137 3.607 5.139 6.740 

MAE, 
106 m3 

0.635 0.846 0.707 1.139 1.336 0.881 0.748 1.048 1.299 1.502 

R 0.869 0.761 0.868 0.710 0.565 0.884 0.893  0.803 0.724 0.567 

 

Thus, it can be concluded that ANN(7-6-5) model for full year data is the best model for 

multi-step-ahead prediction and the corresponding model architecture is shown in the Figure 

5.11.  The number of nodes in the input layer is 7 which include current reservoir inflows, 

upstream releases and import as well as surplus from adjacent reservoirs.  The number of 

hidden nodes required is 6 to predict multi-step-ahead inflow using non-linear transformation 

of inputs having hyperbolic-tangent activation function.  The time series and scatter plot of 

ANN(7-6-5) model with the observed series is displayed in Figure 5.12(a) – (j).  The plots 

show that all the observed inflows are satisfactorily mapped for the three reservoirs, 

especially I3t+1.  But the I3t+2 and I3t+3 have not learnt the required observed pattern for 

high inflows.  The network which has learnt the complex and spatio-temporal data is the 

dynamic TLRN with BPTT algorithm and global feedback from output layer to the hidden 

layer.  The input to the network is also delayed with the tapped delay line at the input layer 

resulting in static memory for the network. 
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Figure 5.11 Concurrent multi-step-ahead daily full year ANN(7-6-5) model  
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Figure 5.12(a) – (j) Time series and scatter plot of concurrent daily full year multi-step-

ahead ANN(7-6-5) model during testing period 

 

5.2 Koyna Project Electric Project 

This part of the study describes the models developed for multi-time-step ahead daily 

reservoir inflow prediction for Koyna Hydro Electric Project (KHEP).  The models are 

developed using daily lumped and distributed input data collected from Koyna watershed.  

Different soft computing technique such as ANN, ANFIS and LGP have been developed and 

applied along with stochastic (ARIMA) and deterministic (MLR) linear models as an initial 

step.  Finally the developed models are inter compared to select a best model for real life 

application. 

5.2.1 ARIMA Models (Stochastic Models) 

Stochastic modelling helps the water resources engineers to forecast the observed inflow 

series.  In these stochastic models, only reservoir inflow is used, there is no separate lumped 

and distributed data models and hence reported separately.  Various regressive models are 

available in the literature like AR (p), MA(q), ARMA(p,q) and ARIMA (p,d,q) based on their 

p, q and d.  Since the data available for the present study is non-stationary, the basic 

requirement to develop the AR and ARMA models could not be satisfied.  Hence ARIMA 

model, which could handle non-stationarity in the data is used to predict multi-time-step 

ahead daily inflow into Koyna Reservoir.  
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The ARIMA time-series analysis used lags and shifts in the historical data (e.g. moving 

averages, seasonality) to predict the future values.  It is to be noted that separate models are to 

be developed for different multi-time-step ahead daily inflow prediction.  Since the 

autocorrelation function (ACF) and the partial autocorrelation function (PACF) have not 

provided clear idea on selection of the order of autoregressive (p), moving average (q) and 

differencing (d) parameters for ARIMA modelling, trial and error procedure is adopted to 

select the best parameters (p, d and q).  Various combinations of p, d and q are tried and the 

models that have resulted in better combination are only presented here.  The values of the 

parameters are chosen such that the sum of squared residuals (SSR) between the observed 

data and the estimated values are as small as possible.  The ARIMA models are developed 

using 70% length of the data and remaining 30% length of data is used for testing.  The 

commercially available software SPSS 16.0 was used for ARIMA model development.  The 

analysis was initialized with one parameter at a time, then their combination and so on.  

Even though large numbers of models are developed, only better ARIMA models with 

various combinations of p, q and d with a lead period of 1 day, 2 day and 3 day are depicted in 

Table 5.12.  From Table 5.12, it is apparent that performances of the models are slightly 

deteriorating with increase in lead time.  This may be due to poor correlation of current inflow 

with 2 day and 3 day lagged inflows.  The prediction of 1 day ahead inflow is quite 

satisfactory because the input space contains the most recent information.  It can also be 

observed that ARIMA(2,1,2) model performed better than any other combination for all lead 

periods and the  best statistics obtained R, E, RMSE, are 0.66, 0.56 and 14.99 respectively.  It 

is also found that the model performance is not increasing with the increase in p, q and d.  

The time-series and scatter plot of observed and predicted inflow (1 day lead period) during 

testing period resulted from ARIMA(2,1,2) model are presented in Figure 5.13(a)-(b)  

respectively.  From the time-series and scatter plot it can be seen that only low flows are 

predicted reasonably accurate, medium inflows are over predicted and high inflows are under 

predicted.  The reason may be due to non-linear behaviour of medium and high inflows.  

Hence there is a strong need for better models to predict the non-linear peak inflow.  

Nevertheless ARIMA model can provide first hand information about the process of inflow 

prediction.  In the following section MLR and soft computing techniques like ANN, ANFIS 

and LGP are applied to handle the non-linearity nature of the reservoir inflow. 



 

118 
 

Table 5.12. Performance measures of daily time-step ARIMA models 

Models  Performance 
Criteria 

Development Testing 
1 day 2day 3 day 1 day 2day 3 day 

ARIMA 
1-1-1 

R 0.62 0.56 0.52 0.60 0.54 0.50 

E 0.58 0.55 0.47 0.57 0.51 0.45 
RMSE 17.89 17.95 18.02 18.23 18.32 18.37 
AIC 34656.17 34696.4 34743.16 14952.8 14978.17 14992.21 
BIC 34663.56 34703.79 34753.44 14959.35 14984.71 14998.75 

ARIMA 
2-2-2 

R 0.65 0.59 0.56 0.62 0.57 0.54 
E 0.57 0.56 0.52 0.55 0.52 0.48 
RMSE 14.97 15.13 15.05 15.32 15.43 15.49 
AIC 32515.17 32642.9 32579.21 14057.17 14094.02 14114 
BIC 32522.56 32650.3 32589.31 14063.72 14100.56 14120.55 

ARIMA 
1-2-1 

R 0.63 0.58 0.56 0.64 0.57 0.54 
E 0.54 0.56 0.55 0.51 0.54 0.50 
RMSE 15.12 15.33 15.59 15.46 15.49 15.49 
AIC 32634.96 32800.69 33002.76 14104.02 14114 14114 
BIC 32642.35 32808.08 33012.9 14110.57 14120.55 14120.55 

ARIMA 
1-2-2 

R 0.61 0.58 0.50 0.59 0.52 0.50 
E 0.52 0.49 0.45 0.51 0.50 0.43 
RMSE 15.26 15.78 15.88 15.31 15.39 15.46 
AIC 32745.7 33148.3 33224.2 14053.81 14080.65 14104.02 
BIC 32753.09 33155.69 33234.36 14060.35 14087.19 14110.57 

ARIMA 
2-1-1 

R 0.64 0.55 0.51 0.63 0.52 0.50 
E 0.59 0.52 0.45 0.58 0.50 0.43 
RMSE 15.01 15.03 15.10 15.14 15.20 15.30 
AIC 32547.23 32563.23 32619.06 13996.3 14016.67 14050.44 
BIC 32554.62 32570.62 32629.17 14002.85 14023.22 14056.99 

ARIMA 
2-1-2 

R 0.64 0.60 0.62 0.66 0.62 0.60 
E 0.58 0.50 0.51 0.56 0.53 0.55 
RMSE 14.01 14.12 14.19 14.99 15.12 15.19 
AIC 31718.85 31812.82 31872.24 13945.02 13989.49 14013.28 
BIC 31726.25 31820.21 31882.28 13951.57 13996.04 14019.83 

ARIMA 
3-2-2 

R 0.45 0.47 0.44 0.43 0.45 0.43 
E 0.47 0.42 0.41 0.45 0.41 0.39 
RMSE 15.18 15.32 15.72 16.10 16.12 16.22 
AIC 32682.54 32792.85 33102.53 14312.92 14319.31 14351.16 
BIC 32689.94 32800.24 33112.68 14319.47 14325.86 14357.71 

ARIMA 
4-1-4 

R 0.45 0.43 0.41 0.43 0.41 0.39 
E 0.42 0.40 0.40 0.40 0.40 0.45 
RMSE 18.38 18.54 18.61 18.08 18.10 18.21 
AIC 34980.83 35084.97 35130.24 14910.25 14915.95 14947.15 
BIC 34988.22 35092.36 35140.56 14916.8 14922.49 14953.7 
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Figure 5.13. (a) Time-series and (b) scatter plot of ARIMA (2, 1, 2) model during testing 

period.  

 

5.2.2 Daily Lumped Data Models 

In order to develop daily lumped data models, the daily rainfall values (in mm) from the nine 

rain-gauge stations were spatially averaged (lumped) by Thiessen polygon method and has 

been used as the input.  The models developed and tested using forty seven years (1961-2007) 

of average daily rainfall and corresponding daily inflow data are discussed below. 

5.2.2.1 Daily Lumped Data MLR Models  

As an initial step an attempt has been made to develop conventional MLR model for multi-

time-step ahead daily inflow prediction.  The forecast horizon of 1 day, 2 day and 3 day are 

same as that of ARIMA models (i.e.) every day ahead models are individual.  This is one of 
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the limitations of linear stochastic and MLR models.  Using statistical analysis like cross 

correlation, ACF and PACF twenty different models with various input combinations have 

been developed and applied.  Each and every MLR model is developed using 70% length of 

the data set and remaining 30% for testing.  The commercially available software SPSS 16.0 

has been used for MLR model development.  The performance of the lumped MLR models 

during training and testing period is presented in Table 5.13.  From the table, it can be 

observed that the performance of each model during training and testing is similar indicating 

that the models are not over fitted and also the results are consistent and encouraging.  The 

reason may be due to the fact that statistical properties of training data set and testing data set 

are similar and length of input data used for model development is sufficiently longer.  From 

Table 5.13, it is apparent that the performances of all models are slightly deteriorating with 

increase in lead time.  This behaviour is similar to stochastic ARIMA models.  As the forecast 

lead period increases the correlation between desirable output and given input decreases 

leading to poor prediction. 

For comparison the performance of time-series models (DL-MLR model 1 to DL-MLR model 

7) listed in Table 5.13 are considered.  From this it is observed that model performance is 

increasing up to a lagged input of six and then slightly decreases.  Correlation coefficient (R) 

and Nash-Sutcliff efficiency (E) is gradually increasing and the RMSE, AIC, BIC values are 

decreasing with increase in number of input.  Among seven models, DL-MLR model 6 with 1 

day lead period which used input structure of  Q(t-5),Q(t-4),Q(t-3), Q(t-2), Q(t-1),Q(t) has 

yielded a maximum R(0.67) and E(0.59) value and minimum RMSE (16.21), AIC (14349.81) 

and BIC (14356.35) values.  Since AIC and BIC values are minimum than any other model, 

DL-MLR model 6 may be considered as a parsimonious model.  This number of inputs is 

same as that of prominent ACF lags.  Thus it may be concluded that ACF gives better 

indications of number of inputs in case of deterministic linear time-series modelling.  The 

scatter plot of observed and predicted inflow by DL-MLR model 6 during testing period is 

shown in Figure 5.14.  From this figure and performance measures it is found that this lumped 

time-series MLR models behave same as that of ARIMA (2-1-2) model.  This may be due to 

large data set, which might have completely captured the stochasticity.  However the overall 

performance is not convincing, hence to improve the performance further, the causing 

parameter viz. rainfall is introduced as the input in the model development and is named as 

cause-effect MLR models. 
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Figure 5.14. Scatter plot of observed and 1 day ahead predicted inflow by time-series 

DL-MLR model 6 during testing period  

From Table 5.13, it can be seen that the DL-MLR model 8 to DL-MLR model 16 are cause-

effect models.  In this model type, it is assumed that the output (inflow in this case) is caused 

by the lumped rainfall (exogenous input parameter) over the entire catchment area.  In this 

type, the models are redeveloped and from the performances during training and testing it is 

found that there is gradual improvement with increase in number of inputs up to 7 day lags i.e. 

(from DL-model 8 to DL-model 15) and thereafter the performance is decreasing.  Among the 

cause-effect models DL-MLR model 15 which used 8 inputs has obtained best statistics than 

any other models.  In this type also the model performance is deteriorating as lead time 

increases from 1 day to 3 day.  This could be attributed to the low dependency between the 

values separated by higher lags.  The number of input is same as that of prominent lag 

resulted from the cross correlation plot.  It is also found that the time-series models are 

performing better than cause-effect models.  The reason may be due to the better 

autocorrelation of inflow data than the serial correlation of rainfall.  From the results it may be 

seen that for a linear reservoir condition where there is no prominent storage, ACF gives 

better indication of number of inputs required for time-series models and cross correlation 

plot indicates same for cause-effect models. The scatter plot of observed and predicted inflow 

by best cause-effect DL-MLR model 15 during testing period is shown in Table 5.13.  From 

the Figure and performance measures it is found that cause-effect MLR models behave 

slightly inferior to time-series MLR models.  Since the cause-effect models have not 
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performed satisfactorily, further improvement in the model has been sought by using 

combined inputs while model development.  

Since, it is found that either rainfall data (causing variable) alone or inflow data (effective 

variable) alone is insufficient to reproduce the inflows in an effective way, both rainfall and 

inflow are given as input and named as combined models.  The performances of the 

developed combined DL-MLR models i.e. DL-MLR model 17 to DL-MLR model 20 are 

shown in Table 5.13.  From the table, it is apparent that all the combined DL-MLR models 

found to be better than previous time-series, and cause-effect DL-MLR models as well as 

ARIMA models. However among the combined models, DL-MLR model 18 which used 

input structure as P(t-1),P(t) and Q(t) is showing better performance.  Hence, DL-MLR model 

18 is selected as best MLR model among lumped input data MLR models (including time-

series and cause-effect models).  It is also to be noted that the number of data points during 

training and testing are different leading to skewed AIC and BIC values during training and 

testing.  The combined input is responsible for the reduction in RMSE, AIC, BIC to greater 

extent.  Thus it may be concluded that while developing a lumped reservoir inflow prediction 

model, having impulse response to rainfall, combined input models may result in better 

scenario. 
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Figure 5.15. Scatter plot of observed and 1 day ahead predicted inflow by cause-effect 

DL-MLR model 15 during testing period  
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Table 5.13. Performance measures of daily lumped data MLR models 

Models  Performance 
Criteria 

Training  Testing 
Lead period  Lead period 
1 day 2day 3 day 1 day 2day 3 day 

Time-series models 

DL-
MLR 
Model 
1 

R 0.56 0.53 0.50 0.51 0.48 0.50 

E 0.54 0.53 0.48 0.50 0.47 0.52 
RMSE 17.98 18.21 18.47 18.16 18.31 18.52 
AIC 34724.36 34878.17 35042.59 14935.44 14977.69 15036.78 
BIC 34731.75 34885.56 35049.99 14941.99 14984.23 15043.33 

DL-
MLR 
Model 
2 

R 0.62 0.58 0.55 0.58 0.48 0.50 
E 0.56 0.55 0.50 0.47 0.47 0.52 
RMSE 17.64 17.37 18.19 17.89 18.20 18.25 
AIC 34496.71 34307.06 34863.49 14857.04 14946.96 14960.83 
BIC 34504.11 36473.33 34870.88 14863.58 14953.51 14967.37 

DL-
MLR 
Model 
3 

R 0.64 0.62 0.59 0.61 0.59 0.55 
E 0.61 0.53 0.51 0.58 0.52 0.51 
RMSE 17.59 17.66 18.01 17.67 17.98 18.23 
AIC 34456.66 34505.58 34743.27 14793.94 14883.04 14952.86 
BIC 34464.05 34512.97 34750.66 14800.49 14889.59 14959.4 

DL-
MLR 
Model 
4 

R 0.66 0.63 0.60 0.62 0.60 0.57 
E 0.63 0.60 0.58 0.59 0.55 0.54 
RMSE 16.70 16.99 17.00 17.06 17.35 17.92 
AIC 33833.89 34045.4 34050.67 14613.81 14699.78 14865.31 
BIC 33841.28 34052.87 34058.07 14620.36 14706.32 14871.85 

DL-
MLR 
Model 
5 

R 0.67 0.65 0.61 0.65 0.64 0.60 
E 0.63 0.62 0.59 0.63 0.62 0.62 
RMSE 16.37 16.64 16.96 16.90 16.96 17.34 
AIC 33592.2 33790.66 34022.35 14565.01 14581.17 14697.64 
BIC 33599.6 33798.06 34029.75 14571.55 14587.72 14704.18 

DL-
MLR 
Model 
6 

R 0.70 0.68 0.64 0.67 0.62 0.59 
E 0.66 0.60 0.53 0.59 0.57 0.56 
RMSE 15.99 17.06 18.56 16.21 17.23 18.83 
AIC 33316.25 34090.42 35106.71 14349.81 14664.83 15121.76 
BIC 33323.65 34097.82 35114.1 14356.35 14671.38 15128.3 

DL-
MLR 
Model 
7 

R 0.65 0.62 0.58 0.61 0.57 0.50 
E 0.61 0.58 0.55 0.58 0.56 0.45 
RMSE 15.25 16.12 17.38 15.31 15.68 15.99 
AIC 32745.65 33410.11 34312.63 14055.61 14176.87 14280.63 
BIC 32753.04 33417.51 34320.03 14062.15 14183.41 14287.18 

 Cause-effect models 
DL-
MLR 
Model 
8 

R 0.55 0.52 0.50 0.52 0.50 0.45 
E 0.45 0.43 0.44 0.40 0.37 0.35 
RMSE 19.17 19.23 19.25 19.46 20.14 20.80 
AIC 35495.64 35530 35544.27 15291.02 15467.53 15634.03 
BIC 35503.03 35537.4 35551.67 15297.57 15474.08 15640.58 
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DL-
MLR 
Model 
9 

R 0.58 0.55 0.52 0.55 0.52 0.48 
E 0.55 0.54 0.42 0.46 0.50 0.47 
RMSE 19.17 19.23 19.25 19.46 20.14 20.80 
AIC 35495.64 35530 35544.27 15291.02 15467.53 15634.03 
BIC 35503.03 35537.4 35551.67 15297.57 15474.08 15640.58 

DL-
MLR 
Model 
10 

R 0.60 0.58 0.55 0.57 0.54 0.50 
E 0.58 0.56 0.45 0.48 0.45 0.48 
RMSE 19.12 19.26 19.18 19.23 19.36 19.69 
AIC 35462.89 35546.22 35497.44 15229.13 15262.94 15351.46 
BIC 35470.28 35553.61 35504.83 15235.68 15269.49 15358 

DL-
MLR 
Model 
11 

R 0.62 0.58 0.56 0.58 0.55 0.53 
E 0.67 0.55 0.46 0.49 0.47 0.49 
RMSE 18.86 19.20 19.00 19.12 19.41 19.72 
AIC 35298.25 35513.74 35386.87 15200.37 15277.39 15358.08 
BIC 35305.64 35521.13 35394.26 15206.91 15283.94 15364.63 

DL-
MLR 
Model 
12 

R 0.62 0.58 0.56 0.59 0.55 0.54 
E 0.66 0.55 0.47 0.50 0.48 0.50 
RMSE 19.12 19.33 19.03 19.17 19.15 19.94 
AIC 35462.89 35591.07 35406.46 15213.91 15208.17 15416.98 
BIC 35470.28 35598.47 35413.86 15220.46 15214.71 15423.53 

DL-
MLR 
Model 
13 

R 0.63 0.59 0.58 0.58 0.56 0.56 
E 0.62 0.56 0.49 0.52 0.49 0.52 
RMSE 18.92 19.41 19.15 19.18 19.41 19.46 
AIC 35331.74 35641.18 35477.81 15215.17 15277.39 15291.02 
BIC 35339.13 35648.57 35485.21 15221.72 15283.94 15297.57 

DL-
MLR 
Model 
14 

R 0.63 0.60 0.55 0.62 0.57 0.55 
E 0.61 0.56 0.50 0.54 0.50 0.52 
RMSE 18.89 19.46 19.20 19.30 18.98 19.04 
AIC 35313.25 35672.66 35513.74 15249.17 15162.72 15179.16 
BIC 35320.64 35680.05 35521.13 15255.71 15169.27 15185.71 

DL-
MLR 
Model 
15 

R 0.66 0.64 0.60 0.63 0.58 0.56 
E 0.61 0.60 0.58 0.57 0.50 0.53 
RMSE 14.95 15.87 17.63 17.37 17.77 17.98 
AIC 32503.09 33220.9 34488.8 14706.18 14822.06 14882.32 
BIC 32510.48 33228.3 34496.19 14712.73 14828.6 14888.87 

DL-
MLR 
Model 
16 

R 0.54 0.53 0.52 0.50 0.50 0.45 
E 0.45 0.44 0.45 0.45 0.38 0.35 
RMSE 19.71 20.07 18.021 18.53 18.60 18.89 
AIC 35827.94 36042.87 34746.78 15038.36 15056.43 15137.03 
BIC 35835.33 32791.42 34754.18 15044.9 15062.98 15143.57 

Combined models 
DL-
MLR 
Model 
17 

R 0.70 0.65 0.63 0.65 0.62 0.60 
E 0.63 0.60 0.62 0.57 0.61 0.59 
RMSE 14.10 15.31 18.02 18.53 18.60 18.89 
AIC 31802.67 32791.42 34746.78 15038.36 15056.43 15137.03 
BIC 31810.06 32798.81 34754.18 15044.9 15062.98 15143.57 

DL-
MLR 

R 0.84 0.82 0.77 0.80 0.79 0.74 
E 0.69 0.68 0.57 0.66 0.62 0.54 
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Model 
18 

RMSE 14.57 16.06 16.70 14.83 16.64 17.29 
AIC 32199.94 33363.02 33833.89 13891.64 14483.66 14680.47 
BIC 32207.33 33370.41 33841.28 13898.19 14490.21 14687.02 

DL-
MLR 
Model 
19 

R 0.67 0.65 0.62 0.71 0.68 0.65 
E 0.64 0.61 0.56 0.65 0.62 0.59 
RMSE 14.20 15.24 18.02 16.93 15.32 16.05 
AIC 31890.2 32734.8 34746.78 14574 14057.8 14299.57 
BIC 31897.6 32742.19 34754.18 14580.55 14064.35 14306.12 

DL-
MLR 
Model 
20 

R 0.65 0.62 0.60 0.69 0.66 0.63 
E 0.62 0. 59 0.50 0.66 0.65 0.61 
RMSE 14.55 14.91 18.29 16.33 15.64 15.74 
AIC 32180.12 32470.75 34928.99 14388.1 14165.53 14197.94 
BIC 32187.51 32478.14 34936.38 14394.65 14172.08 14204.48 

 

Figure 5.16 show the scatter plots between the actual observations and corresponding 

predictions for different lead times of 1 day, 2 day and 3 day during testing period by 

combined DL-MLR model 18.  Visual inspection of these Figures reveals that the 

performances of the models are deteriorating with increase in lead period, especially peak 

values.  In all the MLR models, 1 day ahead prediction was found to produce more acceptable 

results, may be because of higher correlation with 1 day ahead input and output.  The poor 

performance of higher lead period may be due to non-linear relationship between current 

inflow and higher order input variables.  The other important point is that if length of data is 

sufficiently large, a both deterministic and stochastic linear model performs similar.  

Nevertheless further improvement in inflow prediction is needed to capture the complex and 

non-linear peak inflows.  In the following section soft computing techniques like ANN, 

ANFIS and LGP are applied to capture the non-linear nature of the reservoir inflows and 

discussed. 

5.2.2.2 Daily Lumped Data TDRNN Models (ANN) 

Previous results of deterministic (MLR) and stochastic (ARIMA) linear models showed that 

the moderate and peak inflows are poorly predicted.  This may due to the non-linear 

relationship between rainfall and inflow.  Hence commonly used non-linear modelling 

technique such as ANN has been applied and the results are discussed in this section.  Most of 

the ANN applications in hydrology have used a feed forward neural network, namely the 

standard multilayer perceptron (MLP) trained with the back-propagation algorithm.  Since 

MLP is a static and memory less network, it often yielded suboptimal solution even though it 

is the most widely used network for water resource variables predictions.  In fact, MLP model 
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does not perform temporal processing and the input vector space does not consider the 

temporal relationship of the inputs.  In order to overcome this drawback, in the present study, 

the network which remembers the past pattern in the training set namely time delay recurrent 

neural network (TDRNN) has been used.  TDRNN consist of two components first one is 

time-delay operators, which are arranged in an incremental order.  The second components, is 

involving initial and past states of a system through recurrent (feedback) connection.  This 

connection recurs either from the output layer or from the hidden layer back to a context unit 

and after one time step returns to the input layer.  TDRNN explicitly considers temporal 

processing in order to perform dynamically.  

 

 
 

Figure 5.16. Scatter plot of observed and multi-time-step ahead predicted inflow by DL-

MLR model 18 during testing period (combined input) 
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A major feature of TDRNN architecture is that the non-linear hidden layer receives the 

contents of both the input time delays and the context unit, which makes it suitable for 

complex sequential input learning.  Despite the past work there is a need to explore 

effectiveness of the TDRNN models for shorter time intervals and also for Indian conditions.  

Multi-input multi-output (MIMO) architecture was selected, for different models for capturing 

the complex, dynamic, and non-linear, rainfall–inflow process in the basin.  The 

determination of the number of neurons in each layer is also an essential task.  The number of 

neurons in the input layer and the output layer can be specified according to the number of 

predictors and predictants, respectively.  The output vector in the output layer is three neurons 

representing the inflow at 1 day, 2 day and 3 day ahead.  The next step in the development of 

the ANN model is the determination of the optimum number of neurons in the hidden layer.  

The number of neurons in the hidden layer was varied from 2 to 20 and best architecture was 

finalized to capture the rainfall-inflow relationship.  TDRNN type of network with dynamic 

memory of time delay, gamma and laguerre are used for improving the network performance.  

The performance summary of various TDRNN models developed with daily data during 

training and testing period is displayed in Table 5.14.  Unlike MLR and ARIMA models 

ANN requires single model to predict the multi-time-step ahead inflow. 

For comparison, initially lumped time-series ANN models namely DL-ANN model 1 to DL-

ANN model 7 (Table 5.14) are considered.  From this Table it is seen that model performance 

is improving up to a lagged input of six days and then gradually decreases.  From Table 5.14 

it is evident that DL-ANN model 6 with 1 day lead period has yielded best statistics and is 

selected as the best lumped time-series ANN model.  It is observed that best time-series ANN 

model performed better than time-series MLR model with an improvement in ‘R’ value (of 

about 32% ) and in ‘E’ value (38%) inspite of same numbers of inputs.  It is also found that 

there is significant improvement in performance over the best lumped combined MLR model.  

Lumped ANN models overcome the limitation of the conventional approaches by extracting 

the desired information directly from the data and also mapping the non-linear relationship.  

The scatter plot of best time-series DL-ANN model 6 during testing period is shown in Figure 

Figure 5.17.  From this Figure and the performance measures it may be concluded that this 

lumped time-series ANN model also failed to predict peak inflows accurately.  
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Figure 5.17. Scatter plot of observed and 1 day ahead predicted inflow by time-series 

DL-ANN model 6 during testing period  

 

On studying the lumped ANN cause-effect models namely DL-ANN model 8 to DL-ANN 

model 16 (Table 5.14) it can be observed that the performance of the models during training 

and testing are comparable.  In this case also the lumped cause-effect DL-ANN model 15 

which used eight inputs has obtained best statistics and outperformed other lumped cause-

effect models.  Also as the forecast time horizon increases from 1 day to 3 day the model 

performance deteriorated.  In this type, R value drop from 0.82 to 0.73 from 1 day to 3 day 

lead period.  The performances of lumped ANN cause-effect models are comparatively 

inferior to the lumped ANN time-series models.  The reason may be due to the difficulty in 

capturing the pattern in input and output data.  The time-series models has only one pattern 

where as the cause-effect models have two different pattern (In time-series models the input 

and output has same pattern however in the cause-effect models, the pattern of input and 

output is different).  The scatter plot of best cause-effect DL-ANN model 15 during testing 

period is shown in Figure 5.18.  From the scatter plot and the performance it may be seen that 

of the cause-effect models also failed to predict the medium and high inflows accurately.  

Hence further combined models have been developed. 
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Figure 5.18. Scatter plot of observed and 1 day ahead predicted inflow by cause-effect 

DL-ANN model 15 during testing period 

 

Analyzing the results of lumped combined ANN models (DL-ANN model 17 to DL-ANN 

model 20) showed comparable performance during training and testing (Table 5.14).  From 

the Table, it is also clear that the overall combined DL-ANN model 18 (3-6-3) obtained best 

performances during training and testing.  DL-ANN model 18 with a lead period of 1 day 

obtained maximum R (0.94), E (0.90) and minimum RMSE (8.55), AIC (11051.7) and BIC 

(11058.24), during testing and thus appears to be a parsimonious model.  Hence, DL-ANN 

model 18 is selected as the best model among all the ANN models.  The scatter plot of 

observed inflow and the multi-time-step ahead predicted inflow resulted from DL-ANN 

model 18 during testing period is shown in Figure 5.19.  The identified lumped ANN model 

resulted in reasonably accurate prediction of medium inflow but not the peak inflows.  The 

reason is that the RR inflow relationship may be highly non-linear.  The shift from the ideal 

line may be due to the possibility of systematic errors.  The resulted network architecture for 

ANN model with gamma memory is shown in Figure 5.20.  Even though the lumped ANN 

models performed better than lumped MLR models there is further scope for improvement 

especially in moderate and peak inflow prediction.  Hence ANFIS technique is employed and 

described in next section.  
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Table 5.14. Performance measures of daily lumped data ANN models (TDRNN) 

Model 
Model 
Type 

Perfor
mance 
Criteri
a 

Training Testing 
Prediction time horizon Prediction time horizon 
1 day 2day 3 day 1 day 2day 3 day 

Time-series model 

DL-
ANN 
Model 
1 

 (1-3-3) 

R 0.78 0.66 0.60 0.64 0.62 0.60 

E 0.76 0.64 0.56 0.63 0.59 0.50 
RMSE 12.11 12.61 13.0 13.03 13.14 13.63 
AIC 29973.06 30465.4 30830.6 13223.95 13266.3 13456.77 
BIC 29980.46 30472.8 30838.00 13230.50 13272.9 13463.32 

DL-
ANN 
Model 
2 

 (2-5-3) 

R 0.80 0.70 0.70 0.65 0.68 0.66 
E 0.78 0.66 0.64 0.70 0.65 0.62 
RMSE 11.69 12.22 12.62 12.18 12.35 12.49 
AIC 29548.95 30074.9 30465.7 12875.38 12949.31 13003.56 
BIC 29556.35 30082.3 30473.19 12881.93 12955.8 13010.11 

DL-
ANN 
Model 
3 

 (3-5-3) 

R 0.85 0.79 0.73 0.70 0.73 0.70 
E 0.83 0.76 0.70 0.73 0.74 0.58 
RMSE 11.26 11.80 11.83 11.76 12.27 12.05 
AIC 29092.62 29658.2 29686.24 12695.64 12915.35 12820.46 
BIC 29100.01 29665.65 29693.63 12702.19 12921.90 12827.01 

DL 
Model 
4 

 (4-3-3) 

R 0.88 0.80 0.75 0.71 0.75 0.71 
E 0.85 0.78 0.71 0.74 0.64 0.60 
RMSE 10.62 11.67 12.01 11.50 11.39 11.50 
AIC 28389.24 29527.38 29871.06 12581.06 12528.36 12581.45 
BIC 28396.63 29534.78 29878.45 12587.61 12534.91 12588.00 

DL-
ANN 
Model 
5 

 (5-4-3) 

R 0.90 0.80 0.75 0.71 0.75 0.71 
E 0.80 0.78 0.71 0.74 0.66 0.61 
RMSE 10.62 11.67 12.01 11.50 11.39 11.50 
AIC 28389.2 29527.38 29871.06 12581.06 12528.36 12581.45 
BIC 28396.63 29534.78 29878.45 12587.61 12534.91 12588.00 

DL-
ANN 
Model 
6 

 (6-4-3) 

R 0.88 0.78 0.75 0.89 0.76 0.73 
E 0.81 0.69 0.63 0.82 0.66 0.60 
RMSE 12.79 12.35 11.00 11.06 11.25 11.06 
AIC 13127.6 12947.3 12351.16 12378.68 12467.86 12379.10 
BIC 13134.1 12953.8 12357.71 12385.23 12474.41 12385.65 

DL 
Model 
7 

 (7-4-3) 

R 0.88 0.80 0.73 0.86 0.80 0.74 
E 0.81 0.72 0.70 0.73 0.78 0.72 
RMSE 10.80 11.24 11.63 11.48 13.29 12.81 
AIC 28597.72 29073.62 29483.56 12569.36 13326.80 13137.29 
BIC 28605.11 29081.01 29490.96 12575.90 13333.35 13143.84 

Cause-effect models 

DL-
ANN 
Model 

 (1-3-3) 
R 0.78 0.72 0.70 0.77 0.75 0.74 
E 0.73 0.70 0.67 0.68 0.72 0.65 
RMSE 12.4 12.62 12.94 12.68 12.86 12.98 
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8 AIC 30324.57 30464.28 30766.36 13084.86 13155.73 13201.87 
BIC 30331.96 30471.68 30773.75 13091.40 13162.28 13208.42 

DL-
ANN 
Model 
9 

 
(2-4-3) 

R 0.83 0.73 0.68 0.81 0.74 0.72 
E 0.74 0.70 0.65 0.68 0.66 0.63 
RMSE 12.35 12.22 12.14 12.53 12.66 12.58 
AIC 30207.57 30074.57 30002.07 13020.03 13076.68 13044.21 
BIC 30214.96 30081.97 30009.46 13026.57 13083.23 13050.75 

DL-
ANN 
Model 
10 

 (3-4-3) 

R 0.81 0.77 0.72 0.80 0.75 0.74 
E 0.75 0.72 0.66 0.70 0.68 0.65 
RMSE 12.35 12.42 12.59 12.62 12.70 12.78 
AIC 30207.17 30272.59 30434.40 13058.31 13092.05 13123.93 
BIC 30214.57 30279.98 30441.79 13064.86 13098.60 13130.48 

DL-
ANN 
Model 
11 

 (4-3-3) 

R 0.81 0.76 0.72 0.80 0.75 0.74 
E 0.75 0.73 0.66 0.70 0.68 0.65 
RMSE 12.35 12.42 12.59 12.62 12.30 12.38 
AIC 30207.17 30272.59 30434.40 13058.31 12927.29 12961.26 
BIC 30214.57 30279.98 30441.79 13064.86 12933.83 12967.81 

DL-
ANN 
Model 
12 

 (5-4-3) 

R 0.80 0.76 0.72 0.80 0.74 0.73 
E 0.73 0.70 0.66 0.68 0.68 0.63 
RMSE 12.23 12.42 12.63 12.58 12.38 12.46 
AIC 30087.85 30272.59 30472.20 13042.25 12960.76 12994.13 
BIC 30095.24 30279.98 30479.60 13048.80 12967.30 13000.68 

DL-
ANN 
Model 
13 

 (6-4-3) 

R 0.80 0.78 0.74 0.78 0.74 0.73 
E 0.75 0.73 0.68 0.69 0.67 0.63 
RMSE 12.06 11.55 11.71 11.80 11.89 12.20 
AIC 29924.96 29403.06 29571.76 12711.42 12752.35 12885.09 
BIC 29932.36 29410.45 29579.16 12717.96 12758.90 12891.63 

DL-
ANN 
Model 
14 

 (7-6-3) 

R 0.82 0.76 0.75 0.80 0.74 0.70 
E 0.76 0.77 0.70 0.72 0.70 0.66 
RMSE 11.94 12.09 12.17 12.18 12.22 12.34 
AIC 29798.15 29953.79 30034.58 12874.17 12892.69 12943.91 
BIC 29805.54 29961.18 30041.97 12880.71 12899.23 12950.45 

DL-
ANN 
Model 
15 

 (8-4-3) 

R 0.84 0.78 0.78 0.82 0.75 0.73 
E 0.75 0.72 0.67 0.76 0.72 064 
RMSE 11.84 11.56 12.27 11.80 11.89 12.20 
AIC 29699.35 29411.7 30128.00 12711.42 12752.35 12885.09 
BIC 29706.7 29419.1 30135.40 12717.96 12758.90 12891.63 

DL-
ANN 
Model 
16 

 (9-5-3) 

R 0.80 0.76 0.70 079 0.73 0.70 
E 0.75 0.70 0.68 0.76 0.68 0.67 
RMSE 11.63 11.71 11.88 11.84 11.88 12.21 
AIC 29484.01 29571.32 29744.79 12728.75 12747.25 12890.44 
BIC 29491.40 29578.72 29752.19 12735.30 12753.79 12896.99 

Combined models 

DL-
ANN 
Model 
17 

 (2-4-3) 

R 0.85 0.82 0.78 0.86 0.73 0.71 
E 0.80 0.77 0.73 0.77 0.82 0.80 
RMSE 10.74 10.83 11.28 10.96 11.45 11.37 
AIC 28522.60 28624.94 29117.69 12332.15 12557.60 12519.81 
BIC 28529.99 28632.33 29125.09 12338.70 12564.14 12526.35 
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DL-
ANN 
Model 
18 

 
(3-6-3) 

R 0.95 0.94 0.91 0.94 0.92 0.92 
E 0.92 0.87 0.83 0.90 0.85 0.82 
RMSE 8.37 10.45 10.93 8.55 10.56 10.74 
AIC 25532.96 28194.23 28743.68 11051.70 12142.23 12230.26 
BIC 25540.36 28201.62 28751.08 11058.24 12148.78 12236.80 

DL-
ANN 
Model 
19 

 (5-4-3) 

R 0.86 0.82 0.78 0.84 0.81 0.75 
E 0.78 0.76 0.70 0.80 0.71 0.65 
RMSE 9.95 10.59 11.10 10.40 10.92 11.01 
AIC 27613.12 28364.14 28924.83 12063.49 12313.65 12356.05 
BIC 27620.51 28371.53 28932.22 12070.04 12320.19 12362.60 

DL-
ANN 
Model 
20 

 (7-3-3) 

R 0.84 0.80 0.79 0.82 0.79 0.76 
E 0.77 0.73 0.69 0.74 0.69 0.69 
RMSE 10.15 11.19 11.37 10.64 11.06 11.18 
AIC 27843.95 29020.11 29214.64 12179.35 12379.10 12436.97 
BIC 27851.34 29027.51 29222.03 12185.90 12385.65 12443.51 

 
 

 
 

Figure 5.19. Scatter plot of observed and multi-time-step ahead predicted inflow by best 

DL-ANN model 18 during testing period (combined input) 
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Figure 5.20. Typical ANN structure of best combined DL-ANN model 18 

5.2.2.3 Daily Lumped Data ANFIS Models  

The neuro-fuzzy approach combines the advantages of fuzzy logic and neural network to 

design an architecture that uses a fuzzy logic to represent knowledge in an interpretable 

manner.  It also self-organizes the network structure and adapts the parameters of fuzzy 

system for predicting the reservoir inflow.  A specific approach in neuro-fuzzy development 

is the adaptive neuro-fuzzy inference system (ANFIS), which has shown significant results in 

modelling non-linear functions.  ANFIS uses the learning ability of the ANN to define the 

input–output relationship and constructs the fuzzy rules by determining the input structure.  

The system results were obtained by thinking and reasoning capability of the fuzzy logic.  The 

hybrid-learning algorithm and subtractive function are used to determine the input structure.  

There are two types of fuzzy inference system in the literature: the Sugeno–Takagi (ST) 

inference system and the Mamdani inference system.  In this study, the ST inference system is 
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used for hydrological time-series modelling.  The most important difference between these 

systems is the definition of the consequence parameter.  The consequence parameter in the ST 

inference system is a linear equation, called a ‘first-order ST inference system, or a constant 

coefficient, called a ‘zero-order ST inference system’.  In the present study, various ANFIS 

models have been developed with input and output parameters same as that of ANN models, 

however the membership functions (MFs) are varied.  In case of ANFIS models, number of 

membership function associated with each input variable is fixed by trial and error.  Excess 

number of MFs on the input variable will increase the number of “if-then” fuzzy rules and 

simultaneously increases the model complexity and hence affect the model parsimony.  Hence 

numbers of MFs are varied between two to four.  The parsimonious structure that resulted in 

minimum error and maximum efficiency during training and testing were selected as the final 

form of ANFIS model.  Due to smoothness and concise notation, the bell membership 

functions are increasingly popular for specifying fuzzy sets.  The bell shaped membership 

functions have one more parameter than Gaussian membership functions, thus fuzzy set can 

be approached when the free parameter is tuned, and the same is adopted in this study.  The 

resulted statistical performances of all the ANFIS models are shown in Table 5.15.   

For comparison, initially the time-series models namely DL-ANFIS model 1 to DL-ANFIS 

model 7 are considered and discussed in this section (Table 5.15).  From the Table, it is 

observed that the model performance is gradually increasing with increase in the input 

variables up to five and then gradually decreases.  The performance of the lumped time-series 

DL-ANFIS model 5 has resulted in a better performance amongst all the lumped ANFIS time-

series models.  Since AIC and BIC values are least than any other model, indicating that DL-

ANFIS model 5 is relatively parsimonious.  Lumped time-series ANFIS models performed 

better than lumped time-series ANN model.  The superiority of the ANFIS to ANN method 

may be due to fuzzy partioning of the inputs space and creating a rule-base to generate the 

output.  The scatter plot of best time-series ANFIS model during testing period is shown in 

Figure 5.21.  From this Figure, it may be observed that the lumped time-series ANFIS model 

failed to capture peak inflows accurately, hence for further improvement cause-effect models 

are developed and discussed.  
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Figure 5.21. Scatter plot of observed and 1 day ahead predicted inflow by time-series 

DL-ANFIS model 5 during testing period 

Analyzing the results of cause-effect models (Table 5.15) it is found that the performances of 

all the models are comparatively similar and comparable. But among the cause-effect ANFIS 

models, DL-ANFIS model 14 is slightly better than any other cause-effect ANFIS models. 

DL-ANFIS model 14 with 1 day lead period displayed best statistics with maximum of R 

(0.92) and E (0.87). As the lead period increases from 1 day, 2 day to 3 day the R value drops 

from (0.92) to (0.81). Hence it is found that there is gradual deterioration in performances 

from 1 day lead period to 3 day lead period.  

The scatter plot of observed and predicted inflow of the best cause-effect DL-ANFIS model 

14 during testing period is shown in Figure 5.22. From this figure it is found that the 

performances of both time-series and cause-effect model are almost similar and no significant 

improvement is found in the peak inflow prediction. Thus it may be concluded that the 

ANFIS model has resulted in equal performance for time-series and cause-effect input data. 
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Figure 5.22. Scatter plot of observed and 1 day ahead predicted inflow by cause-effect 

DL-ANFIS model 14 during testing period  

Studying the performance of combined models (DL-ANFIS model 17 to DL-ANFIS model 

20) it is found that DL-ANFIS model 18 performed better than any other model. It is also 

observed that all the lumped time-series and lumped combined ANFIS models performed 

better with three membership functions where as cause-effect models performed better with 

two memberships function. The combined DL-ANFIS model 18 with 1 day lead period 

obtained best values of R (0.96), E (0.91), RMSE (8.07), AIC (10753.42) and BIC 

(10759.97). Thus from the above results, it may be concluded that the lumped DL-ANFIS 

model 18, which used 3 inputs outperformed the other ANFIS models. The scatter plot of DL-

ANFIS model 18 with lead period of 1 day, 2 day and 3 day is shown in Figure 5.11. From 

the scatter plots it can be seen that low and medium inflows are well predicted by the model 

but peak inflows are under predicted. It is also observed that prediction of ANFIS model at 

higher lead period (3 day) is found to be better than those from other lumped ANN and 

lumped MLR models. The final ANFIS structure for the best DL-ANFIS model 18 with five 

layers is shown in Figure 5.24. The initial and final membership function for DL-ANFIS 

model 18 is shown in Figure 5.25(a) and Figure 5.25(b). From this membership functions it is 

seen that the inflows (60 to 200 X 106 m3) has large number fuzzy rules and predicted well. 

But still the peak inflows are under predicted. To improve the peak inflow prediction, 

applicability of LGP technique is employed and described.  
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Table 5.15. Performance measures of daily lumped data ANFIS models 

Models  Member
ship 
function 

Performanc
e Criteria 

Training  Testing 
Lead period  Lead period 
1 day 2day 3 day 1 day 2day 3 day 

Time-series models 

DL-
ANFIS 
Model 1 

3 

R 0.83 0.78 0.69 0.68 0.67 0.66 

E 0.79 0.75 0.70 0.67 0.64 0.63 
RMSE 11.90 12.30 12.74 12.84 13.14 13.07 
AIC 29764.75 30155.36 30577.54 13146.84 13266.36 13240.13 
BIC 29772.14 30162.75 30584.94 13153.39 13272.91 13246.67 

DL-
ANFIS 
Model 2 3 

R 0.84 0.79 0.71 0.70 0.70 0.68 
E 0.82 0.72 0.73 0.74 0.69 0.63 
RMSE 11.10 11.59 12.95 11.01 11.10 12.54 
AIC 28929.21 29443.00 30772.10 12357.96 12399.23 13026.75 
BIC 28936.61 29450.39 30779.49 12364.51 12405.78 13033.30 

DL-
ANFIS 
Model 3 3 

R 0.87 0.82 0.79 0.76 0.74 0.72 
E 0.85 0.79 0.74 0.71 0.73 0.58 
RMSE 11.03 11.59 11.67 11.72 12.35 12.17 
AIC 28851.74 29438.08 29526.50 12677.33 12945.26 12873.13 
BIC 28859.13 29445.47 29533.89 12683.88 12951.81 12879.67 

DL-
ANFIS 
Model 4 3 

R 0.91 0.87 0.85 0.85 0.80 0.76 
E 0.87 0.79 0.75 0.79 0.74 0.69 
RMSE 11.07 11.76 11.46 11.11 11.62 11.23 
AIC 28895.01 29614.08 29308.67 12404.45 12634.99 12455.63 
BIC 28902.41 29621.47 29316.07 12410.99 12641.54 12462.18 

DL-
ANFIS 
Model 5 3 

R 0.94 0.88 0.86 0.90 0.88 0.85 
E 0.87 0.85 0.82 0.84 0.81 0.82 
RMSE 10.28 11.19 11.54 10.60 11.39 11.63 
AIC 28004.05 29020.59 29392.70 12159.02 12528.56 12639.18 
BIC 28011.44 29027.99 29400.09 12165.57 12535.11 12645.73 

DL-
ANFIS 
Model 6 3 

R 0.92 0.87 0.85 0.86 0.83 0.81 
E 0.85 0.79 0.73 0.81 0.80 0.76 
RMSE 10.52 10.79 11.46 11.50 11.69 11.76 
AIC 28280.60 28578.12 29303.64 12581.06 12663.61 12695.64 
BIC 28287.99 28585.51 29311.03 12587.61 12670.16 12702.19 

DL-
ANFIS 
Model 7 3 

R 0.90 0.86 0.82 0.88 0.82 0.76 
E 0.85 0.80 0.77 0.75 0.82 0.76 
RMSE 10.66 11.10 11.63 11.73 13.07 13.20 
AIC 28441.25 28929.21 29483.56 12684.07 13237.87 13289.53 
BIC 28448.64 28936.61 29490.96 12690.62 13244.41 13296.07 

Cause-effect models  
DL-
ANFIS 
Model 8 

2 R 0.83 0.78 0.75 0.82 0.79 0.77 
E 0.78 0.73 0.69 0.72 0.72 0.69 
RMSE 12.27 12.30 12.94 12.28 12.70 12.86 
AIC 30126.69 30154.17 30766.36 12919.62 13092.69 13155.58 
BIC 30134.08 30161.56 30773.75 12926.17 13099.23 13162.12 

DL- 2 R 0.90 0.85 0.78 0.88 0.82 0.79 
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ANFIS 
Model 9 

E 0.82 0.80 0.71 0.75 0.79 0.69 
RMSE 12.27 11.84 12.14 12.36 12.55 12.30 
AIC 30125.89 29700.39 30002.07 12953.53 13028.06 12927.80 
BIC 30133.28 29707.79 30009.46 12960.07 13034.60 12934.34 

DL-
ANFIS 
Model 
10 

2 R 0.85 0.81 0.77 0.84 0.80 0.79 
E 0.79 0.78 0.71 0.73 0.72 0.69 
RMSE 12.27 12.34 12.26 12.70 12.82 12.70 
AIC 30126.29 30194.16 30122.30 13090.45 13139.18 13091.57 
BIC 30133.68 30201.56 30129.69 13097.00 13145.72 13098.12 

DL-
ANFIS 
Model 
11 

2 R 0.83 0.80 0.76 0.84 0.82 0.79 
E 0.78 0.76 0.72 0.74 0.75 0.69 
RMSE 12.31 12.26 12.18 12.26 12.22 12.30 
AIC 30167.66 30113.90 30041.47 12908.85 12893.03 12926.95 
BIC 30175.05 30121.30 30048.86 12915.39 12899.58 12933.49 

DL-
ANFIS 
Model 
12 

2 R 0.85 0.83 0.80 0.84 0.82 0.79 
E 0.79 0.77 0.69 0.75 0.80 0.69 
RMSE 12.23 12.42 12.63 12.58 12.38 12.46 
AIC 30087.85 30272.59 30472.20 13042.25 12960.76 12994.13 
BIC 30095.24 30279.98 30479.60 13048.80 12967.30 13000.68 

DL-
ANFIS 
Model 
13 

2 R 0.87 0.84 0.82 0.84 0.81 0.79 
E 0.81 0.78 0.75 0.79 0.85 0.69 
RMSE 12.06 12.17 12.22 11.59 12.30 12.26 
AIC 29924.96 30034.18 30083.02 12621.61 12925.76 12909.87 
BIC 29932.36 30041.57 30090.42 12628.16 12932.30 12916.42 

DL-
ANFIS 
Model 
14 

2 R 0.93 0.90 0.88 0.92 0.87 0.81 
E 0.89 0.85 0.79 0.87 0.76 0.69 
RMSE 11.41 11.55 11.71 11.80 11.89 12.20 
AIC 29257.69 29403.06 29571.76 12711.42 12752.35 12885.09 
BIC 29265.08 29410.45 29579.16 12717.96 12758.90 12891.63 

DL-
ANFIS 
Model 
15 

2 R 0.90 0.85 0.81 0.84 0.82 0.77 
E 0.87 0.82 0.76 0.76 0.76 0.69 
RMSE 11.94 12.09 12.17 12.18 12.22 12.34 
AIC 29798.15 29953.79 30034.58 12874.17 12892.69 12943.91 
BIC 29805.54 29961.18 30041.97 12880.71 12899.23 12950.45 

DL-
ANFIS 
Model 
16 

2 R 0.89 0.82 0.78 0.85 0.80 0.76 
E 0.75 0.79 0.69 0.80 0.76 0.72 
RMSE 11.63 11.71 11.88 11.84 11.88 12.21 
AIC 29484.01 29571.32 29744.79 12747.25 12747.25 12890.44 
BIC 29491.40 29578.72 29752.19 12753.79 12753.79 12896.99 

Combined Models 
DL-
ANFIS 
Model 
17 

2 R 0.90 0.87 0.85 0.88 0.82 0.79 
E 0.88 0.82 0.80 0.79 0.79 0.75 
RMSE 10.74 10.83 11.28 10.96 11.45 11.37 
AIC 28522.60 28624.94 29117.69 12332.15 12557.60 12519.81 
BIC 28529.99 28632.33 29125.09 12338.70 12564.14 12526.35 

DL-
ANFIS 

3 R 0.94 0.92 0.90 0.96 0.95 0.93 

E 0.91 0.89 0.87 0.91 0.91 0.90 
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Model 
18 

RMSE 7.94 7.88 8.37 8.07 8.26 8.43 
AIC 24899.67 24809.44 25535.54 10753.42 10874.04 10982.75 
BIC 24907.07 24816.83 25542.93 10759.97 10880.59 10989.30 

DL-
ANFIS 
Model 
19 

3 R 0.92 0.89 0.88 0.91 0.82 0.79 
E 0.85 0.81 0.82 0.89 0.79 0.69 
RMSE 9.95 10.59 11.10 10.40 10.92 11.01 
AIC 27613.12 28364.14 28924.83 12063.49 12313.65 12356.05 
BIC 27620.51 28371.53 28932.22 12070.04 12320.19 12362.60 

DL-
ANFIS 
Model 
20 

3 R 0.89 0.85 0.82 0.86 0.84 0.82 
E 0.83 0.79 0.75 0.79 0.70 0.78 
RMSE 10.15 11.32 11.27 9.46 11.22 11.54 
AIC 27843.95 29161.44 29110.60 11571.79 12453.79 12599.29 
BIC 27851.34 29168.83 29118.00 11578.33 12460.34 12605.84 

 
 

 
Figure 5.23. Scatter plot of observed and multi-time step ahead predicted inflow by DL-

ANFIS model 18 during testing period (combined input) 
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Figure 5.24. Final ANFIS structure of the combined DL-ANFIS model 18 

 
 

 
Figure 5.25. (a) Initial membership function and (b) Final membership function of 

combined DL-ANFIS model 18 
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5.2.2.4 Daily Lumped Data LGP Models 

The LGP technique, which provides input-output relationship in the form of computer 

programs, has also been employed for prediction of multi-time step ahead daily reservoir 

(1day, 2 day and 3 day) inflow prediction.  For LGP modelling, Discipulus software package 

Pro Version Lite 4.0, was applied.  The codes are defined in terms of functions and terminal 

sets that modify the contents of internal memory and program counter.  LGP algorithm 

produces multiple lists of programs representing models with the best fit to its training and 

calibrating data. 

Twenty different models, same as that of previous techniques with various input combinations 

have been developed using LGP.  After several trials, the functional set and operational 

parameters used in LGP model are given in Table 5.16.  The population size of 500 provided 

high search space for LGP solution.  The parameter “initial program size” and “maximum 

program size” indicate the maximum size of the program of the initial population and of the 

population from subsequent generations, respectively.  From various trials, it was observed 

that a large initial program size, which leads to good initial exploration of the search space, 

resulted better.  The objective function was to generate the computer program with least MSE.  

The statistical performance resulted from lumped LGP models are presented in Table 5.17.  

The relative comparison of different models in terms of performance is described in the 

following section. 

Table 5.16. Parameters of the LGP model 

Parameter Values 
Population size 500 

Function set 
+, -, *, /, √, ln(x),sin, 
cos, tan 

Initial program size 80 
Maximum program size 512 
Crossover rate (%) 50 
Homologous crossover (%) 50-95 
Mutation rate (%) 90 

 

For comparison, initially time-series models namely DL-LGP model 1 to DL-LGP model 7 

(Table 5.17) are considered.  From these models, it is observed that model performance 

increases as number of input variables increases from one (DL-LGP model 1) to six (DL-LGP 

model 6) and then slightly decreases.  R and E value gradually increases and the RMSE, AIC, 
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BIC values decreases as the number of inputs are increased from one to six.  Among seven 

time-series models, DL-LGP model 6 with 1 day lead period which used input structure of  

Q(t-5),Q(t-4),Q(t-3),Q(t-2), Q(t-1),Q(t) has yielded with maximum R(0.90) and E(0.86) and 

minimum RMSE (10.56), AIC (12142.69) and BIC (12149.24) values respectively.  Since 

AIC and BIC values are least than any other models, time-series DL-LGP model 6 is 

considered relatively parsimonious model.  In comparison with lumped time-series ANFIS 

models, lumped LGP time-series models performed better.  The reason may be due to fewer 

mathematical functions and better build in capacity used in LGP.  The scatter plot of best 

time-series DL-LGP model 6 during testing period is presented in Figure 5.26.  From this 

Figure it is clear that the peak inflows are better predicted than earlier ANN and ANFIS but 

still are not convincing hence it may be concluded that lumped time-series LGP models also 

failed to predict the peak inflows.  Further the effect of cause-effect models are also assessed 

and presented.  
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Figure 5.26. Scatter plot observed and 1 day ahead predicted inflow by time-series DL-

LGP model 6 during testing period  

On studying the cause-effect models namely DL-LGP model 8 to DL-LGP model 16 (Table 

5.17), it can be seen that the performance of the models during training and testing are 

comparable and there is gradual improvement in performances with increase in input up to 6 

day lags i.e. (from DL-LGP model 8 to DL-LGP model 14) and thereafter the performance is 

slightly deteriorated.  In this case, cause-effect DL-LGP model 14 which used input structure 

of P(t-7),P(t-6),P(t-5),P(t-4),P(t-3),P(t-2),P(t-1),P(t) (8 inputs) has obtained best statistics and 
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outperformed other models.  In this type also the performances deteriorated as lead time 

increased from 1 day to 3 day.  The scatter plot of best cause-effect DL-LGP model during 

testing period is depicted in Figure 5.27.  From the performance and scatter plot, it may be 

seen that the performance of lumped cause-effect LGP model is almost similar to that of 

lumped time-series LGP and both the models are unable to capture the peak inflows.  For 

further improvement in the performance, combined models have been developed and applied.  
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Figure 5.27. Scatter plot observed and 1 day ahead predicted inflow by cause-effect DL-

LGP model 14 during testing period  

On analyzing the results of combined models, Table 5.17. Performance measures of daily 

lumped data LGP models (DL-LGP model 17 to DL-LGP model 20) showed comparable 

performance during training and testing.  From the table, it is apparent that all the DL-LGP 

combined models provide satisfactorily results showing almost comparable values of 

goodness of fit criteria.  From the table it can be revealed that DL-LGP model 18 with 1 day 

ahead obtained the best statistics of R (0.98), E (0.93), RMSE (6.95), AIC (9989.05), and BIC 

(9995.60).  Lumped combined LGP model produced excellent results for 1 day ahead and 

accepted prediction results for 2 day ahead and reasonably accurate results for 3 day ahead 

prediction.  There is no significant difference in R and E value from 1 day, 2 day and 3 day 

ahead prediction.  Looking at relative performances of combined models, DL-LGP combined 

model 18 is selected as the best model among all the LGP models.  The scatter plot of this 

best combined DL-LGP model 18 for 1 day, 2 day and 3 day ahead prediction is shown in 

Figure 5.28.  From scatter plots it is observed that LGP technique performed very well for 
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inflow prediction with shorter lead prediction while failed to produce very good results for 

inflow prediction with lead period of 2 day and 3 day.  Smaller lead periods have more 

accurate predictions owing to their higher dependence on the preceding observation.  LGP has 

certain advantages over the ANN and ANFIS as fewer controlling mathematical functions 

(and hence more flexibility in data mining) and a built-in capacity to handle a large amount of 

data.  It is observed that a combination of rainfall and inflow variables in the input vector 

significantly improved the model performances.   

Table 5.17. Performance measures of daily lumped data LGP models 

Models 
Performan
ce Criteria 

Training Testing 
Lead period Lead period 
1 day 2day 3 day 1 day 2day 3 day 

Time-series models 

DL-LGP 
Model 1 

R 0.87 0.79 0.75 0.84 0.81 0.76 
E 0.83 0.62 0.53 0.84 0.65 0.76 
RMSE 11.24 11.65 12.53 11.15 11.72 12.97 
AIC 29073.62 29508.83 30379.54 12420.86 12679.21 13198.66 
BIC 29081.01 29516.23 30386.94 12427.4 12685.75 13205.21 

DL-LGP 
Model 2 

R 0.89 0.84 0.74 0.86 0.92 0.75 
E 0.82 0.79 0.54 0.83 0.84 0.72 
RMSE 11.10 11.59 12.95 11.01 11.10 12.54 
AIC 28929.21 29443.00 30772.10 12357.96 12399.23 13026.75 
BIC 28936.61 29450.39 30779.49 12364.51 12405.78 13033.30 

DL-LGP 
Model 3 

R 0.90 0.78 0.75 0.83 0.80 0.75 
E 0.86 0.60 0.53 0.87 0.63 0.75 
RMSE 10.92 12.24 12.49 11.28 12.21 12.30 
AIC 28722.54 30095.88 30341.92 12478.42 12889.75 12925.07 
BIC 28729.94 30103.27 30349.3` 12484.96 12896.30 12931.62 

DL-LGP 
Model 4 

R 0.92 0.67 0.71 0.86 0.80 0.83 
E 0.82 0.66 0.12 0.76 0.63 0.80 
RMSE 10.65 11.11 11.46 11.11 11.62 11.23 
AIC 28422.20 28934.57 29308.67 12404.45 12634.99 12455.63 
BIC 28429.59 28941.96 29316.07 12410.99 12641.54 12462.18 

DL-LGP 
Model 5 

R 0.90 0.81 0.73 0.85 0.82 0.63 
E 0.83 0.64 0.65 0.84 0.65 0.63 
RMSE 10.88 11.08 11.73 11.02 11.28 11.58 
AIC 28680.54 28901.38 29584.44 12361.57 12480.24 12616.24 
BIC 28687.94 28908.77 29591.84 12368.11 12486.79 12622.79 

DL-LGP 
Model 6 

R 0.92 0.80 0.66 0.90 0.81 0.68 
E 0.86 0.63 0.43 0.86 0.65 0.68 
RMSE 10.96 11.50 12.47 10.56 11.21 11.54 
AIC 28775.76 29348.33 30319.16 12142.69 12450.11 12596.78 
BIC 28783.15 29355.73 30326.55 12149.24 12456.65 12603.32 

DL-LGP 
Model 7 

R 0.89 0.80 0.56 0.89 0.81 0.75 
E 0.80 0.62 0.29 0.84 0.62 0.75 
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RMSE 11.39 11.83 11.91 10.92 10.13 11.70 
AIC 29233.19 29689.67 29770.26 12314.08 11925.4 12668.13 
BIC 29240.59 29697.06 29777.65 12320.63 11931.95 12674.68 

Cause-effect models 

DL-LGP 
Model 8 

R 0.80 0.79 0.74 0.83 0.77 0.75 
E 0.77 0.58 0.50 0.83 0.55 0.75 
RMSE 12.23 12.81 11.49 12.06 12.38 12.06 
AIC 30087.04 30645.29 29342.88 12826.48 12960.59 12824.36 
BIC 30094.44 30652.69 29350.27 12833.03 12967.14 12830.91 

DL-LGP 
Model 9 

R 0.88 0.78 0.37 0.84 0.81 0.55 
E 0.75 0.57 0.08 0.83 0.81 0.55 
RMSE 12.27 11.84 12.14 12.36 12.55 12.30 
AIC 30125.89 29700.39 30002.07 12953.53 13028.06 12927.80 
BIC 30133.28 29707.79 30009.46 12960.07 13034.60 12934.34 

DL-LGP 
Model 10 

R 0.87 0.82 0.81 0.83 0.83 0.76 
E 0.80 0.63 0.76 0.79 0.64 0.54 
RMSE 12.21 11.37 11.41 11.76 12.82 12.70 
AIC 30071.75 29216.03 29256.77 12697.13 13139.18 13091.57 
BIC 30079.15 29223.43 29264.16 12703.68 13145.72 13098.12 

DL-LGP 
Model 11 

R 0.88 0.80 0.56 0.83 0.82 0.60 
E 0.81 0.64 0.30 0.78 0.68 0.60 
RMSE 12.00 11.29 11.66 11.72 12.46 11.95 
AIC 29859.80 29128.07 29515.46 12678.46 12994.30 12779.70 
BIC 29867.20 29135.46 29522.86 12685.00 13000.84 12786.25 

DL-LGP 
Model 12 

R 0.88 0.80 0.56 0.83 0.83 0.67 
E 0.82 0.63 0.29 0.79 0.66 0.34 
RMSE 11.85 11.46 11.98 11.68 13.05 12.06 
AIC 29713.23 29308.67 29838.48 12659.65 13231.22 12823.12 
BIC 29720.63 29316.07 29845.88 12666.20 13237.77 12829.67 

DL-LGP 
Model 13 

R 0.88 0.80 0.75 0.84 0.82 0.76 
E 0.82 0.63 0.56 0.78 0.66 0.76 
RMSE 11.80 11.56 11.63 11.59 11.30 12.04 
AIC 29658.25 29416.55 29487.12 12621.61 12489.73 12818.33 
BIC 29665.65 29423.95 29494.51 12628.16 12496.28 12824.88 

DL-LGP 
Model 14 

R 0.94 0.81 0.75 0.92 0.83 0.76 
E 0.87 0.65 0.54 0.86 0.67  
RMSE 10.58 11.01 12.05 10.46 12.73 12.44 
AIC 28344.84 28829.49 29915.46 12091.65 13102.88 12986.66 
BIC 28352.23 28836.89 29922.85 12098.20 13109.43 12993.21 

DL-LGP 
Model 15 

R 0.90 0.80 0.76 0.88 0.77 0.77 
E 0.86 0.63 0.65 0.84 0.55 0.63 
RMSE 11.53 11.34 13.00 11.11 12.38 12.72 
AIC 29382.31 29183.90 30820.30 12401.74 12959.41 13100.97 
BIC 29389.71 29191.29 30827.69 12408.28 12965.96 13107.52 

DL-LGP 
Model 16 

R 0.88 0.80 0.75 0.92 0.82 0.76 
E 0.80 0.64 0.55 0.84 0.67 0.76 
RMSE 11.90 11.29 12.61 10.95 12.63 12.09 
AIC 29758.39 29131.37 30457.49 12326.79 13064.77 12836.73 
BIC 29765.78 29138.76 30464.88 12333.33 13071.32 12843.27 

Combined models 
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DL-LGP 
Model 17 

R 0.90 0.80 0.76 0.95 0.83 0.76 
E 0.83 0.64 0.56 0.90 0.66 0.56 
RMSE 10.49 11.13 13.34 7.64 11.84 12.50 
AIC 28242.49 28953.04 31136.18 10475.34 12732.24 13008.68 
BIC 28249.88 28960.43 31143.57 10481.89 12738.79 13015.23 

DL-LGP 
Model 18 

R 0.97 0.96 0.96 0.98 0.96 0.95 
E 0.95 0.92 0.92 0.93 0.92 0.92 
RMSE 6.80 7.43 7.69 6.95 7.43 7.69 
AIC 23043.53 24102.04 24518.15 9989.05 10331.1 10509.50 
BIC 23050.9 24109.44 24525.54 9995.60 10337.71 10516.05 

DL-LGP 
Model 19 

R 0.91 0.81 0.76 0.90 0.83 0.76 
E 0.87 0.74 0.68 0.81 0.62 0.76 
RMSE 7.83 11.20 11.46 8.27 11.26 12.60 
AIC 24724.70 29035.93 29307.76 10882.34 12469.49 13050.05 
BIC 24732.10 29043.32 29315.15 10888.88 12476.04 13056.60 

DL-LGP 
Model 20 

R 0.92 0.80 0.76 0.93 0.82 0.70 
E 0.85 0.64 0.56 0.80 0.67 0.62 
RMSE 8.62 11.32 11.27 9.46 11.22 11.54 
AIC 25884.32 29161.44 29110.60 11571.79 12453.79 12599.29 
BIC 25891.72 29168.83 29118.00 11578.33 12460.34 12605.84 

 

The impact of each input vector was analyzed and is presented in Table 5.18.  A value of 100 

% in the frequency column indicates that the particular input variable appeared in set of all 

best programs.  The average and maximum effect of removing all the instances of a 

particulars input from each best program is also presented.  The results are scaled between 0 

to 1.  A value of 1 represents the largest impact value possible.  It is seen that the lag one 

rainfall and inflow has the highest impact in predicting the future inflow.  Thus based on the 

results it may be concluded that the LGP model has a great ability to learn from input-output 

patterns and work efficiently for reservoir inflow prediction with greater accuracy.  The 

proposed LGP model can be attributed as a more practicable and robust than ARIMA, MLR, 

ANN and ANFIS models. 

 

Table 5.18. Impact of each input variable in the combined DL-LGP model 18 

Input 
Parameters 

Frequency 
% 

Average 
 Impact 

Maximum  
Impact 

P(t-1) 63 0.018 0.039 
P(t) 83 0.132 0.246 
Q(t) 100 0.255 0.745 
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Figure 5.28. Scatter plot of observed and multi-time-step ahead predicted inflow by DL-

LGP model 18 during testing period (combined input) 

 

5.2.3 Daily Distributed Data Models  

Unlike lumped data models, in distributed data models the rainfall from different sources or 

stations are not averaged, but considered as individual inputs for the model development.  In 

this study the models are called distributed data models because the rainfall data obtained 

from nine stations are used “as it is” as the input data.  In order to develop daily distributed 

data models, 15 years (1993-2007) of continuous daily rainfall data from nine rain-gauge 

stations and corresponding inflow data has been used.  Twenty different models viz cause-

effect and combined models have been developed with various input combinations (same 

numbers as that of lumped data models).  All the models were developed using 70% length of 

the total data set and remaining 30% has been used for testing.  Further different techniques 

such as MLR, ANN, ANFIS and LGP are applied and their performance is assessed in the 

subsequent section.  

0

50

100

150

200

250

300

350

0 50 100 150 200 250 300 350
Observed inflow(106m3)

P
re

d
ic

te
d

 in
fl

ow
 (

10
6 m

3 )

(a)

1 day ahead

R2=0.96

0

50

100

150

200

250

300

350

0 50 100 150 200 250 300 350

Observed inflow (106m3)

P
re

d
ic

te
d

 in
fl

ow
 (

10
6 m

3 )

2 day ahead

R2=0.92

(b)

0

50

100

150

200

250

300

350

0 50 100 150 200 250 300 350

Obserevd inflow (10
6
m

3
)

P
re

d
ic

te
d

 in
fl

ow
 (

10
6 m

3 ) 3 day ahead

R2=0.90

(c)



 

148 
 

5.2.3.1 Daily Distributed Data MLR Models   

As an initial step, conventional MLR models have been developed using distributed data and 

their performances evaluated.  The commercially available software SPSS 16.0 is used for 

MLR model development.  The resulted performances of the twenty models during training 

and testing period are analyzed and are depicted in Table 5.19.  From Table 5.19, it can be 

observed that, the overall performance of the models during training and testing is similar and 

the results are consistent.  It reveals that the training procedure is successful without 

overtraining and the proposed models have good generalization ability to predict the reservoir 

inflow.  From Table 5.19, it is also noticed that the performances of all the models are slightly 

deteriorating when lead time is increased from 1 day to 3 day.  

On studying the distributed cause-effect models, namely DD-MLR model 1 to DD-MLR 

model 7 (Table 5.19), it can be observed that the performance of the models during training 

and testing are comparable and there is gradual improvement in performances of input up to 4 

day lags i.e. (from DD-MLR model 1 to DD-MLR model 5) and thereafter the performance 

has slightly deteriorated.  The other limitation of DD-MLR model is when the number of 

inputs increased, the model becomes cumbersome, time consuming along with lengthy 

equation.  The scatter plot of observed and predicted inflow for best cause-effect DD-MLR 

model 5 during testing period is depicted in Figure 5.29.  

Analyzing the results of combined models in, Table 5.19 (DD-MLR model 8 to DD-MLR 

model 20), it is apparent that all the combined models show satisfactory results during 

training and testing.  However the combined DD-MLR model 17 outperformed all the models.  

Combined DD-MLR model 17 with 1 day lead period during testing which used 29 input 

variable showed best performances (testing) as evident from the highest R (0.76) and E (0.71).  

Hence, DD-MLR model 17 is selected as the best model among combined models as well as 

among the cause-effect models.  In comparison with the best cause-effect DD-MLR model 5 

to best model DD-MLR model 17 ‘R’ value is increased from (0.62 to 0.76) and ‘E’ value is 

increased from (0.55 to 0.62).  The numbers of input variables are reduced from 45 to 29 

which show that the distributed combined models performed better than distributed cause-

effect models even with lesser number of inputs. 
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Figure 5.29. Scatter plot of observed and 1 day ahead predicted inflow by cause-effect 

DD-MLR model 5 during testing period 

The scatter plot of the observed inflow and the predicted inflow from combined DD-MLR 

model 17 during testing period with a lead period of 1 day, 2 day and 3 day is shown in Figure 

5.30.  Visual inspection of figures reveals that as the lead period increases the performance 

deteriorated.  The identified MLR model performed fairly better in the prediction of low 

inflow but failed in prediction of non-linear peak inflows.  Even though large variation and 

trials have been carried out in the cause-effect model, the performance is not encouraging and 

also inferior to the lumped data models.  Hence in the following section soft computing 

techniques like ANN, ANFIS and LGP are applied to predict peak inflow.  

Table 5.19. Performance measures of daily distributed data MLR models 

Models 
Performa
nce 
Criteria 

Training Testing 
Lead period Lead period 
1 day 2day 3 day 1 day 2day 3 day 

Cause-effect  models 

DD-
MLR 
Model 
1 

R 0.45 0.42 0.40 0.42 0.41 0.45 

E 0.42 0.40 0.42 0.35 0.38 0.35 
RMSE 21.15 22.27 23.14 22.98 23.87 25.76 
AIC 11705.04 11902.93 12049.89 5152.19 5214.62 5339.82 
BIC 11711.29 11909.18 12056.14 5157.59 5220.02 5345.22 

DD- R 0.51 0.48 0.42 0.48 0.43 0.46 
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MLR 
Model 
2 

E 0.45 0.46 0.38 0.42 0.40 0.42 
RMSE 20.16 21.98 22.76 21.87 22.16 23.80 
AIC 11521.19 11852.66 11986.39 5070.85 5092.49 5339.82 
BIC 11527.44 11858.91 11992.64 5076.25 5220.02 5345.22 

DD-
MLR 
Model 
3 

R 0.55 0.52 0.50 0.50 0.48 0.43 
E 0.51 0.46 0.48 0.45 0.42 0.40 
RMSE 19.12 19.30 20.21 20.54 21.32 22.87 
AIC 11318.07 11354.00 11530.69 4967.76 5029.00 5144.30 
BIC 11324.32 11360.25 11536.94 4973.17 5034.40 5149.71 

DD-
MLR 
Model 
4 

R 0.60 0.58 0.53 0.58 0.55 0.53 
E 0.57 0.55 0.44 0.52 0.51 0.49 
RMSE 19.86 21.87 22.54 19.87 19.98 20.32 
AIC 11463.69 11833.42 11949.14 4913.27 4922.34 4950.07 
BIC 11469.95 11839.67 11955.39 4918.68 4927.75 4955.47 

DD-
MLR 
Model 
5 

R 0.64 0.62 0.59 0.62 0.56 0.55 
E 0.59 0.56 0.55 0.55 0.50 0.52 
RMSE 15.92 16.23 18.61 18.33 18.75 18.91 
AIC 10615.65 10689.61 11214.39 4780.73 4817.95 4831.91 
BIC 10621.91 10695.87 11220.64 4786.13 4823.36 4837.32 

DD-
MLR 
Model 
6 

R 0.58 0.55 0.50 0.50 0.48 0.43 
E 0.55 0.52 0.48 0.45 0.42 0.40 
RMSE 18.12 19.30 20.21 20.54 21.32 22.87 
AIC 11112.06 11354.00 11530.69 4967.76 5029.00 5144.30 
BIC 11118.31 11360.25 11536.94 4973.17 5034.40 5149.71 

DD-
MLR 
Model 
7 

R 0.54 0.50 0.50 0.52 0.51 0.42 
E 0.48 0.46 0.48 0.43 0.40 0.39 
RMSE 18.98 19.01 20.21 20.14 21.12 22.67 
AIC 11289.88 11295.94 11530.69 4935.45 5013.51 5129.87 
BIC 11296.14 11302.19 11536.94 4940.85 5018.92 5135.28 

Combined  models 

DD-
MLR 
Model 
8 

R 0.65 0.62 0.60 0.61 0.56 0.54 
E 0.60 0.52 0.50 0.58 0.45 0.46 
RMSE 19.82 19.61 19.11 18.89 19.27 19.76 
AIC 11455.96 11415.11 11316.06 4830.17 4862.90 4904.15 
BIC 11462.21 11421.36 11322.31 4835.58 4868.30 4909.56 

DD-
MLR 
Model 
9 

R 0.67 0.65 0.62 0.64 0.59 0.55 
E 0.63 0.55 0.55 0.61 0.58 0.48 
RMSE 18.15 18.69 18.91 18.89 18.98 17.31 
AIC 11118.40 11230.84 11275.71 4830.17 4837.98 4686.66 
BIC 11124.65 11237.09 11281.97 4835.58 4843.39 4692.06 

DD-
MLR 
Model 
10 

R 0.69 0.66 0.61 0.63 0.61 0.59 
E 0.65 0.57 0.54 0.60 0.58 0.52 
RMSE 16.08 16.34 16.57 18.29 18.68 18.35 
AIC 10654.00 10715.52 10769.12 4777.14 4811.81 4782.52 
BIC 10660.26 10721.77 10775.37 4782.54 4817.21 4787.93 

DD-
MLR 
Model 

R 0.72 0.69 0.63 0.69 0.65 0.61 
E 0.69 0.59 0.56 0.63 0.58 0.56 
RMSE 15.98 15.14 14.23 15.66 16.54 17.54 
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11 AIC 10630.08 10423.00 10185.28 4522.07 4611.90 4708.35 
BIC 10636.33 10429.25 10191.53 4527.48 4617.30 4713.75 

DD-
MLR 
Model 
12 

R 0.73 0.68 0.59 0.69 0.66 0.63 
E 0.61 0.57 0.52 0.56 0.64 0.56 
RMSE 16.29 17.38 17.75 16.29 16.76 17.89 
AIC 10703.76 10952.15 11032.94 4586.88 4633.61 4740.81 
BIC 10710.02 10958.40 11039.19 4592.28 4639.01 4746.21 

DD-
MLR 
Model 
13 

R 0.70 0.65 0.57 0.62 0.60 0.58 
E 0.60 0.55 0.50 0.55 0.54 0.54 
RMSE 16.60 17.67 17.94 16.41 16.68 18.03 
AIC 10776.06 11015.61 11073.77 4598.93 4625.75 4753.62 
BIC 10782.31 11021.87 11080.02 4604.34 4631.15 4759.02 

DD-
MLR 
Model 
14 

R 0.72 0.70 0.68 0.68 0.65 0.63 
E 0.58 0.65 0.62 0.61 0.63 0.67 
RMSE 15.89 16.04 16.76 15.89 16.04 16.76 
AIC 10608.42 10644.45 10812.85 4546.03 4561.47 4633.61 
BIC 10614.67 10650.71 10819.10 4551.43 4566.87 4639.01 

DD-
MLR 
Model 
15 

R 0.76 0.72 0.66 0.75 0.71 0.70 
E 0.70 0.65 0.68 0.71 0.69 0.66 
RMSE 16.87 16.14 16.23 16.66 16.38 17.32 
AIC 10837.93 10668.29 10689.61 4623.78 4595.93 4687.61 
BIC 10844.19 10674.54 10695.87 4629.18 4601.33 4693.01 

DD-
MLR 
Model 
16 

R 0.75 0.72 0.66 0.75 0.71 0.70 
E 0.72 0.65 0.68 0.71 0.69 0.66 
RMSE 16.51 16.64 16.73 18.07 16.93 16.87 
AIC 10755.21 10785.29 10805.98 4757.26 4650.19 4644.36 
BIC 10761.46 10791.54 10812.23 4762.66 4655.59 4649.76 

DD-
MLR 
Model 
17 

R 0.80 0.82 0.75 0.76 0.72 0.70 
E 0.67 0.68 0.65 0.62 0.61 0.52 
RMSE 16.03 16.62 18.56 16.87 19.25 21.76 
AIC 10642.06 10780.68 11204.07 4644.36 4861.19 5062.56 
BIC 10648.31 10786.93 11210.32 4649.76 4866.59 5067.96 

DD-
MLR 
Model 
18 

R 0.76 0.73 0.67 0.72 0.65 0.62 
E 0.62 0.60 0.59 0.58 0.57 0.51 
RMSE 18.03 18.62 19.03 18.06 18.65 18.98 
AIC 11092.96 11216.45 11299.97 4756.35 4809.17 4837.98 
BIC 11099.21 11222.70 11306.23 4761.75 4814.57 4843.39 

DD-
MLR 
Model 
19 

R 0.70 0.66 0.63 0.65 0.60 0.57 
E 0.60 0.57 0.54 0.58 0.58 0.50 
RMSE 18.87 19.65 19.76 19.05 19.62 19.87 
AIC 11267.59 11422.93 11444.33 4844.03 4892.47 4913.27 
BIC 11273.85 11429.18 11450.59 4849.44 4897.88 4918.68 

DD-
MLR 
Model 
20 

R 0.68 0.61 0.57 0.61 0.57 0.55 
E 0.59 0.55 0.54 0.55 0.53 0.49 
RMSE 15.76 17.21 18.98 19.52 19.66 19.89 
AIC 10576.92 10914.46 11289.88 4884.08 4895.82 4914.93 
BIC 10583.17 10920.71 11296.14 4889.48 4901.22 4920.33 
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Figure 5.30. Scatter plot of observed and multi-time-step ahead predicted inflow by best 

DD-MLR model 17 during testing (combined input) 

5.2.3.2 Daily Distributed Data TDRNN Models (ANN) 

From the previous results, it is observed that the conventional DD-MLR models failed to 

predict the observed inflows, especially peak and moderate inflows.  In order to model the 

non-linearity and improve the peak inflow prediction, comprehensive multi-input multi-output 

(MIMO) and TDRNN type of networks (same as that of lumped data models) are developed.  

The neurons in the output layer represented the inflow at 1 day, 2 day and 3 day ahead. The 

number of neurons in the hidden layer was varied from 5 to 50 and best architecture was 

finalized to capture the rainfall-inflow relationship.  The performance summary of TDRNN 

models developed with full year data during training and testing phases are given in Table 

5.20 

For comparison, initially distributed data cause-effect ANN models namely DD-ANN model 

1 to DD-ANN model 7 (Table 5.20) are studied.  From the results it can be observed that 
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performance of the models during training and testing are comparable.  The DD-ANN model 

3 which required 27 inputs and obtained best statistics and outperformed other models.  As 

forecast horizon increases from 1 day to 3 day lead period the performance gradually 

decreases i.e. ‘R’ value dropped from 0.75 to 0.70.  In comparison with the previous DD-

MLR models, it is found that the performance of the models has improved with ANN 

technique.  It is also observed that increasing the input variables beyond 27, the model 

becomes very complex and training time increased and subsequently performance reduced. 

The scatter plot of observed and predicted inflow of DD-ANN model 3 during testing period 

is shown in Figure 5.31.  From the scatter plot it may be seen that the results are similar to 

DD-MLR model 17(the best DD-MLR model) and no significant improvement is found in 

moderate and peak inflow prediction.  
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Figure 5.31. Scatter plot of observed and 1 day ahead predicted inflow by cause-effect 

DD-ANN model 3 during testing period 

Analyzing the results of combined models (models 8 to 20) it is also apparent that overall 

DD-ANN model 15, obtained best performance during testing.  This model required 25 inputs 

less than cause-effect models.  The scatter plot of observed inflow and the predicted inflow 

from (DD-ANN model 15) during testing period with lead period of 1 day, 2day and 3 day is 

depicted in Figure 5.32.  From these Figures it is visualized that, as lead period increases the 

performance deteriorated.  The identified DD-ANN model 15 (1 day ahead) behaves 

reasonably accurate in the prediction of medium flow but not in prediction of non-linear peak 
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flows and outliers.  In ANN technique also DL models performed slightly better than DD-

ANN models, because of reduced noise due to lumping the inputs. 

Table 5.20. Performance measures of daily distributed data TDRNN models (ANN) 

Model Perform
ance 
Criteria 

Training Testing 
Lead period Lead period 
1 day 2day 3 day 1 day 2day 3 day 

Cause-effect models 

DD-ANN 
Model 1 
(9-10-3) 

R 0.71 0.65 0.63 0.68 0.63 0.62 

E 0.69 0.62 0.59 0.62 0.59 0.57 
RMSE 21.15 22.27 23.14 22.98 23.87 25.76 
AIC 11705.04 11902.93 12049.89 5152.19 5214.62 5339.82 
BIC 11711.29 11909.18 12056.14 5157.59 5220.02 5345.22 

DD-ANN 
Model 2 
(18-12-3) 

R 0.74 0.69 0.64 0.69 0.65 0.61 
E 0.70 0.63 0.60 0.68 0.66 0.59 
RMSE 20.16 21.98 22.76 21.87 22.16 23.8 
AIC 11521.19 11852.66 11986.39 5070.85 5092.49 5209.79 
BIC 11527.44 11858.91 11992.64 5076.25 5097.89 5215.20 

DD-ANN 
Model 3 
(27-18-3) 

R 0.82 0.81 0.78 0.75 0.72 0.70 
E 0.71 0.70 0.68 0.73 0.71 0.65 
RMSE 11.72 11.90 12.07 12.48 12.76 12.56 
AIC 9441.07 9499.52 9553.92 4149.14 4185.60 4159.64 
BIC 9447.33 9505.78 9560.17 4154.55 4191.00 4165.04 

DD-ANN 
Model 4 
(36-20-3) 

R 0.76 0.75 0.72 0.76 0.72 0.69 
E 0.71 0.69 0.69 0.69 0.65 0.60 
RMSE 12.23 15.78 16.38 12.84 19.98 16.34 
AIC 9604.43 10581.78 10724.89 4195.86 4922.34 4591.91 
BIC 9610.68 10588.03 10731.15 4201.27 4927.75 4597.32 

DD-ANN 
Model 5 
(45-25-3) 

R 0.77 0.75 0.73 0.75 0.72 0.69 
E 0.70 0.71 0.71 0.69 0.67 0.65 
RMSE 12.26 14.65 15.38 13.02 15.23 16.87 
AIC 9613.82 10296.83 10483.32 4218.74 4476.33 4644.36 
BIC 9620.07 10303.08 10489.57 4224.14 4481.73 4649.76 

DD-ANN 
Model 6 
(54-30-3) 

R 0.79 0.77 0.75 0.78 0.75 0.72 
E 0.73 0.70 0.65 0.75 0.70 0.68 
RMSE 12.18 15.75 16.26 12.96 13.27 16.34 
AIC 9588.71 10574.48 10696.70 4211.15 4249.99 4591.91 
BIC 9594.97 10580.73 10702.95 4216.55 4255.39 4597.32 

DD-ANN 
Model 7 
(63-40-3) 

R 0.75 0.71 0.68 0.72 0.67 0.65 
E 0.73 0.68 0.58 0.67 0.66 0.61 
RMSE 12.86 16.10 16.35 12.76 21.32 16.38 

AIC 10654.00 10715.52 10769.12 4777.14 4811.81 4782.52 
BIC 10660.26 10721.77 10775.37 4782.54 4817.21 4787.93 

Combined models 
DD-ANN R 0.75 0.70 0.67  0.69 0.66 
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Model 8 
(10-15-3) 

0.71 
E 0.70 0.68 0.62 0.68 0.60 0.55 
RMSE 11.38 12.21 12.62 12.23 13.21 13.44 
AIC 9328.17 9598.15 9724.81 4115.89 4242.54 4270.90 
BIC 9334.43 9604.40 9731.06 4121.30 4247.94 4276.30 

DD-ANN 
Model 9 
(19-14-3) 

R 0.77 0.72 0.71 0.72 0.70 0.68 
E 0.73 0.69 0.65 0.70 0.68 0.62 
RMSE 11.02 11.65 11.78 11.98 12.01 12.65 
AIC 9204.89 9418.10 9460.66 4081.96 4086.07 4171.37 
BIC 9211.15 9424.35 9466.91 4087.37 4091.47 4176.78 

DD-ANN 
Model 10 
(20-16-3) 

R 0.80 0.78 0.73 0.73 0.70 0.69 
E 0.78 0.76 0.69 0.70 0.68 0.65 
RMSE 10.80 11.36 11.81 11.76 12.27 12.45 
AIC 9127.56 9321.43 9470.41 4051.5 4121.26 4145.19 
BIC 9133.81 9327.68 9476.66 4056.91 4126.66 4150.59 

DD-ANN 
Model 11 
(21-16-3) 

R 0.83 0.79 0.76 0.79 0.74 0.65 
E 0.74 0.72 0.69 0.70 0.69 0.65 
RMSE 11.59 14.66 14.22 12.44 12.76 12.56 
AIC 9398.30 10299.45 10182.58 4143.87 4185.60 4159.64 
BIC 9404.55 10305.70 10188.83 4149.27 4191.00 4165.04 

DD-ANN 
Model 12 
(22-16-3) 

R 0.87 0.83 0.80 0.79 0.77 0.71 
E 0.82 0.78 0.73 0.75 0.68 0.65 
RMSE 10.13 11.23 11.58 11.06 11.38 11.54 
AIC 8881.95 9277.29 9394.99 3950.68 3997.54 4020.48 
BIC 8888.20 9283.54 9401.24 3956.08 4002.95 4025.89 

DD-ANN 
Model 13 
(23-16-3) 

R 0.85 0.82 0.81 0.78 0.75 0.72 
E 0.81 0.79 0.70 0.75 0.69 0.63 
RMSE 10.98 11.79 12.21 11.68 11.81 11.92 
AIC 9190.95 9463.91 9598.15 4040.29 4058.48 4073.71 
BIC 9197.20 9470.16 9604.40 4045.70 4063.88 4079.12 

DD-ANN 
Model 14 
(24-15-3) 

R 0.80 0.76 0.69 0.78 0.76 0.74 
E 0.75 0.69 0.65 0.74 0.71 0.62 
RMSE 14.02 14.18 14.97 14.88 14.71 14.91 
AIC 10128.26 10171.78 10379.69 4438.13 4419.25 4441.44 
BIC 10134.51 10178.03 10385.95 4443.53 4424.66 4446.84 

DD-ANN 
Model 15 
(25-15-3) 

R 0.92 0.85 0.81 0.90 0.82 0.77 
E 0.88 0.82 0.78 0.84 0.79 0.65 
RMSE 13.00 10.78 11.14 12.22 10.79 11.06 
AIC 9838.58 9120.45 9246.43 4114.55 3910.07 3950.68 
BIC 9844.83 9126.70 9252.68 4119.95 3915.48 3956.08 

DD-ANN 
Model 16 
(28-16-3) 

R 0.80 0.76 0.74 0.71 0.69 0.65 
E 0.69 0.69 0.63 0.70 0.67 0.62 
RMSE 11.68 12.95 13.28 12.84 11.89 12.62 
AIC 9427.96 9823.80 9920.30 4195.86 4069.57 4167.47 
BIC 9434.21 9830.05 9926.56 4201.27 4074.98 4172.87 

DD-ANN 
Model 17 
(29-16-3) 

R 0.80 0.74 0.72 0.71 0.66 0.65 
E 0.69 0.69 0.63 0.70 0.67 0.62 
RMSE 11.51 11.97 12.13 11.62 13.65 13.83 
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AIC 9368.40 9522.02 9572.94 4031.83 4296.37 4317.90 
BIC 9374.65 9528.27 9579.19 4037.24 4301.78 4323.30 

DD-ANN 
Model 18 
  (30-16-3) 

R 0.78 0.74 0.70 0.76 0.73 0.72 
E 0.71 0.72 0.68 0.74 0.70 0.68 
RMSE 12.65 12.76 13.02 12.87 13.12 13.23 
AIC 9733.92 9767.12 9844.48 4199.70 4231.31 4245.03 
BIC 9740.17 9773.37 9850.73 4205.10 4236.71 4250.43 

DD-ANN 
Model 19 
(39-20-3) 

R 0.82 0.79 0.73 0.80 0.76 0.70 
E 0.71 0.76 0.65 0.74 0.70 0.63 
RMSE 13.52 13.68 14.43 12.46 16.76 17.03 
AIC 9988.99 10034.11 10238.80 4146.51 4633.61 4659.87 
BIC 9995.24 10040.36 10245.05 4151.91 4639.01 4665.27 

DD-ANN 
Model 20 
(48-30-3) 

R 0.83 0.77 0.72 0.76 0.68 0.65 
E 0.72 0.70 0.62 0.70 0.66 0.59 
RMSE 11.64 14.73 14.89 12.64 19.62 16.01 
AIC 9414.81 10317.71 10359.15 4170.07 4892.47 4558. 
BIC 9421.06 10323.97 10365.40 4175.48 4897.88 4563.79 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.32. Scatter plot of observed and multi-time-step ahead predicted inflow by best 

DD-ANN model 15 during testing period (combined input) 
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5.2.3.3 Daily Distributed Data ANFIS Models 

Since TDRNN technique has not resulted in encouraging results, especially the peak inflow 

prediction, the ANFIS techniques is tried.  In this case various twenty ANFIS models have 

been developed, same as previous sections by changing the input parameters and membership 

functions.  The membership function varied between 2 to 4.  The resulted statistical 

performances of all twenty models are shown in Table 5.21.  In this type also, model 

performance has deteriorated as the lead period increases from 1 day to 3 day.  In case of 

ANFIS models, number of membership function associated with each input variable is fixed 

by trial and error.  The increased number of input variables and MF on the input variable also 

increased the number of fuzzy “if-then” rules and simultaneously increased the model 

complexity, and parsimony.  Hence in this case subtractive fuzzy clustering method has been 

used to classify the input data because of large input variables.  The type of membership 

function used for all the models is a generalized bell type, which is direct generalization of 

Cauchy distribution used in the probability theory.  The relative comparison of performance 

criteria of cause-effect and time-series models are discussed below.  

Analyzing the results of distributed cause-effect models (Table 5.21) DD-ANFIS model 1 to 

DD-ANFIS model 7 it is found that relative performance of all the models are comparatively 

consistent in both training as well as testing.  In this case, cause-effect DD-ANFIS model 4 

which used input structure has obtained best statistics and outperformed other ANN and 

ANFIS models.  The superiority of the ANFIS technique to TDRNN may be due to fuzzy 

partioning of the inputs space and for creating a rule-base to generate the output.  The scatter 

plot of the observed and predicted inflow by best cause-effect DD-ANFIS model 4 during 

testing period is presented in Figure 5.33.  From the Figure, it can be observed that that the 

peak inflows are still under predicted hence for further improvement combined models have 

been developed. 

Studying the performance of combined models (DD-ANFIS model 7 to DD-ANFIS model 

20) it is found that the DD-ANFIS model 16 (28 inputs) outperformed all other models.  It is 

also found that the all the combined models ANFIS models performed better with three 

membership functions where as the cause-effect models performed better with 2 memberships 

function.  The scatter plot of observed and the predicted inflows by DD-ANFIS model 16 

with a lead period of 1 day, 2 day and 3 day is shown in Figure 5.34.  From the scatter plots, it 
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can be seen that low and medium inflows are well predicted by the model but peak inflows 

are still under predicted.  In ANFIS model it is found that there is only marginal difference 

between DL and DD-ANFIS models  

 

Table 5.21. Performance measures of daily distributed data ANFIS models 

Models  Member 
rship  
function 

Performance 
 Criteria 

Training  Testing 
Lead period  Lead period 
1 day 2day 3 day 1 day 2day 3 day 

Cause-effect models 

DD-
ANFIS 
Model 
1 

2 

R 0.77 0.74 0.68 0.64 0.62 0.60 

E 0.74 0.70 0.61 0.61 0.58 0.55 
RMSE 12.15 12.62 13.40 13.77 13.58 14.10 
AIC 9579.26 9724.81 9954.80 4310.75 4287.93 4349.67 
BIC 9585.51 9731.06 9961.05 4316.16 4293.33 4355.07 

DD-
ANFIS 
Model 
2 

2 

R 0.79 0.76 0.71 0.66 0.64 0.62 
E 0.76 0.74 0.63 0.60 0.59 0.58 
RMSE 12.11 12.54 13.28 13.74 13.55 13.74 
AIC 9566.61 9700.42 9920.30 4307.17 4284.29 4307.17 
BIC 9572.86 9706.67 9926.56 4312.58 4289.70 4312.58 

DD-
ANFIS 
Model 
3 

2 

R 0.82 0.80 0.76 0.80 0.77 0.71 
E 0.79 0.76 0.66 0.78 0.71 0.62 
RMSE 11.69 12.45 13.13 13.37 13.21 13.41 
AIC 9431.24 9672.80 9876.74 4262.32 4242.54 4267.23 
BIC 9437.50 9679.05 9882.99 4267.73 4247.94 4272.63 

DD-
ANFIS 
Model 
4 

2 

R 0.91 0.84 0.82 0.87 0.85 0.81 
E 0.87 0.82 0.78 0.79 0.73 0.73 
RMSE 11.16 11.58 12.11 12.59 12.79 12.89 
AIC 9253.31 9394.99 9566.61 4163.56 4189.45 4202.25 
BIC 9259.56 9401.24 9572.86 4168.96 4194.86 4207.65 

DD-
ANFIS 
Model 
5 

2 

R 0.89 0.84 0.81 0.84 0.79 0.76 
E 0.84 0.79 0.63 0.76 0.75 0.69 
RMSE 11.16 12.41 12.74 13.27 13.43 13.32 
AIC 9253.31 9660.46 9761.10 4249.99 4269.68 4256.17 
BIC 9259.56 9666.71 9767.36 4255.39 4275.08 4261.57 

DD-
ANFIS 
 
Model 
6 

2 

R 0.89 0.84 0.81 0.84 0.79 0.76 
E 0.81 0.79 0.63 0.75 0.75 0.69 
RMSE 11.25 12.41 12.74 13.02 13.18 13.27 
AIC 9284.11 9660.46 9761.10 4218.74 4238.80 4249.99 
BIC 9290.36 9666.71 9767.36 4224.14 4244.21 4255.39 

DD-
ANFIS 
Model 
7 

2 

R 0.84 0.81 0.78 0.80 0.72 0.69 
E 0.80 0.78 0.74 0.74 0.63 0.62 
RMSE 12.02 12.41 13.13 13.37 13.91 14.10 
AIC 9538.00 9660.46 9876.74 4262.32 4327.37 4349.67 
BIC 9544.26 9666.71 9882.99 4267.73 4332.78 4355.07 
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Combined models 
DD-
ANFIS 
Model 
8 

3 R 0.73 0.70 0.68 0.62 0.60 0.57 
E 0.65 0.62 0.61 0.54 0.52 0.51 
RMSE 13.58 13.79 14.08 16.69 15.87 17.29 
AIC 10005.97 10064.82 10144.64 4626.73 4543.96 4684.76 
BIC 10012.23 10071.08 10150.89 4632.14 4549.36 4690.17 

DD-
ANFIS 
Model 
9 

3 

R 0.75 0.72 0.70 0.73 0.69 0.62 
E 0.66 0.64 0.62 0.63 0.59 0.56 
RMSE 13.21 13.42 13.72 13.15 12.19 16.31 
AIC 9900.04 9960.52 10045.31 4235.06 4110.51 4588.89 
BIC 9906.29 9966.77 10051.56 4240.47 4115.92 4594.30 

DD-
ANFIS 
Model 
10 

3 

R 0.75 0.72 0.70 0.73 0.69 0.62 
E 0.66 0.64 0.62 0.63 0.59 0.56 
RMSE 13.21 13.42 13.72 16.39 18.32 17.31 
AIC 9900.04 9960.52 10045.31 4596.93 4779.83 4686.66 
BIC 9906.29 9966.77 10051.56 4602.34 4785.24 4692.06 

DD-
ANFIS 
Model 
11 

3 

R 0.78 0.75 0.73 0.75 0.71 0.66 
E 0.69 0.66 0.65 0.66 0.62 0.59 
RMSE 13.17 13.46 14.08 15.77 17.93 16.73 
AIC 9888.41 9971.94 10144.64 4533.57 4744.48 4630.67 
BIC 9894.66 9978.19 10150.89 4538.98 4749.88 4636.07 

DD-
ANFIS 
Model 
12 

3 

R 0.80 0.76 0.75 0.76 0.73 0.69 
E 0.75 0.73 0.66 0.69 0.65 0.62 
RMSE 13.05 13.42 14.10 14.38 18.75 16.42 
AIC 9853.30 9960.52 10150.08 4381.97 4817.95 4599.94 
BIC 9859.55 9966.77 10156.33 4387.38 4823.36 4605.34 

DD-
ANFIS 
Model 
13 

3 

R 0.79 0.75 0.73 0.77 0.72 0.70 
E 0.76 0.71 0.67 0.70 0.66 0.68 
RMSE 13.13 13.50 14.10 14.38 16.20 16.12 
AIC 9876.74 9983.31 10150.08 4381.97 4625.75 4753.62 
BIC 9882.99 9989.57 10156.33 4387.38 4631.15 4759.02 

DD-
ANFIS 
Model 
14 

3 

R 0.82 0.79 0.75 0.78 0.76 0.74 
E 0.77 0.76 0.69 0.76 0.68 0.70 
RMSE 13.21 13.54 14.14 14.38 21.12 16.42 
AIC 9900.04 9994.66 10160.94 4381.97 5013.51 4599.94 
BIC 9906.29 10000.91 10167.20 4387.38 5018.92 4605.34 

DD-
ANFIS 
Model 
15 

3 

R 0.84 0.80 0.76 0.80 0.74 0.71 
E 0.75 0.71 0.69 0.75 0.71 0.62 
RMSE 13.01 11.55 11.71 11.79 12.45 12.50 
AIC 9841.53 9385.04 9437.80 4055.69 4145.19 4151.77 
BIC 9847.78 9391.29 9444.05 4061.10 4150.59 4157.18 

DD-
ANFIS 
Model 
16 

3 

R 0.94 0.89 0.88 0.92 0.88 0.85 
E 0.85 0.76 0.72 0.89 0.76 0.69 
RMSE 10.34 11.91 13.73 11.31 13.15 13.19 
AIC 8960.64 10780.68 11204.07 4757.26 4861.19 5062.56 
BIC 8966.89 10786.93 11210.32 4762.66 4866.59 5067.96 

DD-
ANFIS 3 

R 0.72 0.74 0.71 0.67 0.62 0.59 
E 0.71 0.73 0.68 0.63 0.58 0.49 
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Model 
17 

RMSE 14.11 13.56 14.04 12.22 14.65 15.05 
AIC 10152.80 10000.32 10133.73 4114.55 4412.54 4456.79 
BIC 10159.05 10006.57 10139.98 4119.95 4417.94 4462.20 

DD-
ANFIS 
Model 
18 

3 

R 0.83 0.81 0.79 0.81 0.79 0.74 
E 0.76 0.73 0.71 0.69 0.59 0.68 
RMSE 13.38 13.48 13.68 13.80 14.66 11.63 
AIC 9949.07 9977.63 10034.11 4314.33 4413.66 4033.25 
BIC 9955.33 9983.88 10040.36 4319.73 4419.06 4038.65 

DD-
ANFIS 
Model 
19 

3 

R 0.83 0.81 0.75 0.79 0.74 0.69 
E 0.72 0.74 0.70 0.73 0.69 0.62 
RMSE 12.61 12.03 13.78 12.62 16.65 18.63 
AIC 9721.77 9541.19 10062.04 4167.47 4622.79 4807.40 
BIC 9728.02 9547.44 10068.29 4172.87 4628.19 4812.81 

DD-
ANFIS 
Model 
20 

3 

R 0.81 0.77 0.72 0.74 0.70 0.67 
E 0.73 0.70 0.67 0.68 0.66 0.60 
RMSE 13.12 13.83 14.14 16.10 18.62 17.33 
AIC 9873.82 10075.93 10160.94 4567.60 4806.52 4688.56 
BIC 9880.07 10082.18 10167.20 4573.00 4811.92 4693.96 
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Figure 5.33. Scatter plot of observed and 1 day ahead predicted inflow by cause-effect 

DD-ANFIS model 4 during testing period 
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Figure 5.34. Scatter plot of observed and multi-time-step ahead predicted inflow by best 

DD-ANFIS model 16 during testing period (combined input) 

 

5.2.3.4 Daily Distributed Data LGP Models 

The procedure adopted in daily distributed data LGP is same as that of daily lumped data LGP 

models.  Twenty different models same as that of previous techniques with various input 

combinations have been developed with LGP techniques.  The statistical performance 

measures of twenty different models are also presented in Table 5.22.  The relative 

comparison of different models in terms of performance is described in following section. 

On studying the cause-effect models namely DD-LGP model 1 to DD-LGP model 7 (Table 

5.22) it can be seen that the performance of the models during training and testing are 

comparable and there is a gradual improvement in performances with increase in input up to 3 

day lags i.e. (from DD-LGP model 1 to DD-LGP model 5) and thereafter the performance is 

slightly deteriorated.  In this case, DD-LGP model 5 (45 inputs) has obtained best statistics 
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and outperformed all other models.  In this type also, the model performance deteriorated as 

lead time increases from 1 day to 3 day.  The scatter plot of the observed and predicted 

inflows by best cause-effect DD-LGP model 5 during testing period is shown in Figure 5.35.  

From this figure it is understood that the there is some improvement in moderate to peak 

inflow prediction than previous DD-ANFIS models.  Even though the correlation is similar 

the model is slightly inferior to daily lumped data models, because of very high variations in 

the distributed data.  In case of lumped data the variation is average leading to much smoother 

pattern. 
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Figure 5.35. Scatter plot of observed and 1 day ahead predicted inflow by cause-effect 

DD-LGP model 5 during testing period  

Analyzing the results of combined models, Table 5.22 (DD-LGP model 8 to DD-LGP model 

20) showed comparable performance during training and testing.  From the Table 5.22 it is 

also apparent that all the combined models show satisfactory results.  From the Table 5.22 it 

can be revealed that the combined DD-LGP model 16 with 1 day lead period during testing 

obtained the best statistics.  The scatter plot of the observed and predicted inflow by best 

combined DD-LGP model 16 with 1 day, 2 day and 3 day ahead prediction is shown in Figure 

5.36.  From the scatter plot it is found that the LGP technique performed very well for inflow 

prediction with shorter lead prediction while failed to produce very good results for inflow 

prediction with lead period of 3 day.  But it can be seen that low, medium and high inflows 

are well predicted than previous models even for higher lead period.  It is observed that a 
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combination of rainfall and inflow variables in the input vector significantly improves the 

model performances.  The LGP models have a great ability to learn from input-output patterns 

and work efficiently in reservoir inflow prediction with great accuracy.  In this case also the 

impact of rainfall and inflow are similar to lumped data set.  Also, there is only marginal 

difference between DL and DD-LGP models.  

Table 5.22. Performance measures of daily distributed data LGP models 

Models  Performance 
Criteria 

Training  Testing 
Lead period  Lead period 
1 day 2day 3 day 1 day 2day 3 day 

Cause-effect  models 

DD-
LGP 
Model 
1 

R 0.72 0.71 0.68 0.69 0.65 0.61 

E 0.72 0.61 0.59 0.62 0.57 0.55 
RMSE 13.75 14.96 17.92 14.67 15.60 16.02 
AIC 10053.68 10377.13 11069.49 4414.78 4515.77 4559.42 
BIC 10059.94 10383.38 11075.75 4420.18 4521.17 4564.82 

DD-
LGP 
Model 
2 

R 0.76 0.75 0.71 0.75 0.72 0.69 
E 0.70 0.64 0.61 0.69 0.62 0.59 
RMSE 14.53 14.67 14.83 14.67 15.60 16.02 
AIC 10265.29 10302.06 10343.66 4414.78 4515.77 4559.42 
BIC 10271.54 10308.31 10349.91 4420.18 4521.17 4564.82 

DD-
LGP 
Model 
3 

R 0.80 0.78 0.75 0.82 0.81 0.78 
E 0.75 0.73 0.69 0.78 0.79 0.57 
RMSE 14.12 14.23 14.38 14.16 14.75 15.66 
AIC 10155.52 10185.28 10225.49 4356.64 4423.71 4522.07 
BIC 10161.77 10191.53 10231.74 4362.05 4429.12 4527.48 

DD-
LGP 
Model 
4 

R 0.72 0.74 0.71 0.67 0.62 0.59 
E 0.71 0.73 0.68 0.63 0.58 0.49 
RMSE 14.11 13.56 14.04 12.22 14.65 15.05 
AIC 10152.80 10000.32 10133.73 4114.55 4412.54 4456.79 
BIC 10159.05 10006.57 10139.98 4119.95 4417.94 4462.20 

DD-
LGP 
Model 
5 

R 0.87 0.74 0.66 0.89 0.77 0.68 
E 0.74 0.54 0.41 0.81 0.57 0.42 
RMSE 14.56 14.96 16.48 16.70 15.37 16.15 
AIC 10273.20 10377.13 10748.24 4627.72 4491.36 4572.69 
BIC 10279.45 10383.38 10754.49 4633.12 4496.77 4578.10 

DD-
LGP 
Model 
6 

R 0.83 0.75 0.66 0.81 0.77 0.68 
E 0.74 0.54 0.40 0.79 0.56 0.42 
RMSE 17.25 14.96 16.56 14.58 16.07 16.36 
AIC 10923.36 10377.13 10766.81 4404.67 4564.54 4073.71 
BIC 10929.61 10383.38 10773.06 4410.07 4569.94 4079.12 

DD-
LGP 
Model 
7 

R 0.80 0.70 0.62 0.78 0.76 0.62 
E 0.72 0.52 0.41 0.65 0.50 0.40 
RMSE 17.26 15.64 16.38 14.29 14.58 16.26 
AIC 10925.58 10547.60 10724.89 4371.66 4404.67 4583.85 
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BIC 10931.83 10553.86 10731.15 4377.06 4410.07 4589.25 
Combined  models  
DD-
LGP 
Model 
8 

R 0.77 0.71 0.64 0.66 0.62 0.63 
E 0.63 0.48 0.38 0.51 0.53 0.40 
RMSE 14.79 16.96 15.61 15.21 13.87 17.13 
AIC 10333.30 10858.34 10540.24 4474.17 4322.64 4669.49 
BIC 10339.56 10864.59 10546.49 4479.57 4328.05 4674.89 

DD-
LGP 
Model 
9 

R 0.79 0.71 0.64 0.66 0.62 0.63 
E 0.63 0.48 0.38 0.51 0.53 0.40 
RMSE 14.68 16.96 15.61 15.21 16.16 17.13 
AIC 10304.67 10858.34 10540.24 4474.17 4573.71 4669.49 
BIC 10310.93 10864.59 10546.49 4479.57 4579.12 4674.89 

DD-
LGP 
Model 
10 

R 0.78 0.73 0.65 0.68 0.67 0.64 
E 0.64 0.49 0.39 0.53 0.55 0.42 
RMSE 14.45 14.75 15.64 14.88 14.32 14.61 
AIC 10244.11 10322.92 10547.60 4438.13 4375.10 4408.04 
BIC 10250.37 10329.17 10553.86 4443.53 4380.51 4413.45 

DD-
LGP 
Model 
11 

R 0.87 0.76 0.65 0.85 0.79 0.71 
E 0.73 0.55 0.39 0.81 0.57 0.44 
RMSE 14.13 14.64 16.85 16.71 16.78 15.24 
AIC 10158.23 10294.21 10833.38 4628.70 4635.57 4477.41 
BIC 10164.48 10300.46 10839.64 4634.10 4640.97 4482.81 

DD-
LGP 
Model 
12 

R 0.87 0.36 0.75 0.86 0.36 0.78 
E 292.31 0.03 0.55 0.81 0.78 0.67 
RMSE 13.09 13.78 14.58 16.58 17.75 17.61 
AIC 9865.04 10062.04 10278.46 4615.87 4727.90 4714.89 
BIC 9871.29 10068.29 10284.71 4621.27 4733.31 4720.30 

DD-
LGP 
Model 
13 

R 0.87 0.74 0.76 0.88 0.78 0.73 
E 0.74 0.63 0.56 0.82 0.61 0.64 
RMSE 16.11 15.34 15.43 16.32 16.43 17.65 
AIC 10661.15 10473.33 10495.76 4589.90 4600.94 4718.62 
BIC 10667.41 10479.58 10502.01 4595.30 4606.34 4724.02 

DD-
LGP 
Model 
14 

R 0.87 0.75 0.81 0.89 0.79 0.86 
E 0.74 0.55 0.64 0.79 0.60 0.69 
RMSE 15.59 15.42 14.27 15.17 16.12 16.23 
AIC 10535.32 10493.28 10196.04 4469.84 4569.64 4580.81 
BIC 10541.58 10499.53 10202.29 4475.25 4575.04 4586.22 

DD-
LGP 
Model 
15 

R 0.84 0.71 0.67 0.81 0.77 0.61 
E 0.72 0.51 0.52 0.78 0.58 0.55 
RMSE 14.34 15.76 16.02 15.91 15.76 15.87 
AIC 10214.81 10576.92 10639.67 4548.10 4532.53 4543.96 
BIC 10221.06 10583.17 10645.92 4553.50 4537.94 4549.36 

DD-
LGP 
Model 
16 

R 0.94 0.92 0.93 0.95 0.90 0.91 
E 0.87 0.86 0.86 0.90 0.84 0.82 
RMSE 10.22 10.83 11.01 10.89 12.66 13.91 
AIC 8915.87 9138.20 9201.41 3925.23 4172.67 4327.37 
BIC 8922.12 9144.45 9207.67 3930.63 4178.07 4332.78 

DD- R 0.87 0.74 0.72 0.85 0.78 0.76 
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LGP 
Model 
17 

E 0.75 0.64 0.59 0.80 0.69 0.63 
RMSE 13.32 13.48 14.65 14.04 14.87 15.02 
AIC 9931.84 9977.63 10296.83 4342.66 4437.03 4453.52 
BIC 9938.09 9983.88 10303.08 4348.06 4442.43 4458.92 

DD-
LGP 
Model 
18 

R 0.80 0.70 0.61 0.72 0.68 0.61 
E 0.72 0.50 0.50 0.65 0.58 0.55 
RMSE 15.02 15.44 16.31 15.91 15.65 15.59 
AIC 10392.48 10498.25 10708.47 4548.10 4521.02 4514.71 
BIC 10398.73 10504.50 10714.72 4553.50 4526.43 4520.12 

DD-
LGP 
Model 
19 

R 0.87 0.75 0.72 0.85 0.77 0.73 
E 0.74 0.55 0.52 0.82 0.58 0.62 
RMSE 17.11 17.68 18.87 16.27 18.65 19.11 
AIC 10892.11 11017.78 11267.59 4584.86 4809.17 4849.20 
BIC 10898.36 11024.04 11273.85 4590.26 4814.57 4854.60 

DD-
LGP 
Model 
20 

R 0.87 0.85 0.74 0.83 0.80 0.75 
E 0.71 0.82 0.55 0.71 0.79 0.71 
RMSE 14.11 14.21 14.31 14.34 15.62 16.19 
AIC 10152.80 10179.88 10206.78 4377.40 4517.87 4576.76 
BIC 10159.05 10186.13 10213.03 4382.80 4523.28 4582.16 

 
Figure 5.36. Scatter plot of observed and multi-time-step ahead predicted inflow by DD-

LGP model 16 during testing period 
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5.3 Summary  

This chapter addressed the application of conventional and AI techniques single and multi-

reservoir inflow prediction.  Performance measures such as R, RMSE, E, AIC and BIC are 

explored to check the accuracy and adequacy of the models.  For KIP system, the non-linear 

AI models performed very well using the MA data pre-processing technique for full year and 

seasonal data inflow prediction in the case of multi-reservoirs considering each reservoir 

independently.  Concurrent inflow prediction using ANN(6-3-3) model without considering 

exogenous inputs showed R values of 0.950, 0.966 and 0.954 for Manikdoh, Pimpalgaon Joge 

and Yedgaon reservoirs respectively in case of seasonal data.  The one-step-ahead daily full 

year ANN(7-4-3) model with TLRN network and gamma memory has performed better than 

MLP network.  The accuracy of one-step-ahead prediction was very good for all the reservoirs 

but the 2-day and 3-day-ahead is slightly less which may be due to the highly non-linear 

relationship in the input data, which the TLRN model itself could not predict.  Thus, based on 

the results from the independent and concurrent predictions, it can be summarized that the 

TLRN type of ANN network with short-term gamma memory structure is suitable for 

forecasting concurrent multi-reservoir inflows for daily full year and daily seasonal data. 

For KHEP, model 18 with 1 day ahead resulted better among lumped data models for all the 

modelling techniques (except ARIMA).  It is also observed that lumped daily data models 

slightly performed better distributed data models.  The reason may be length of data available 

for distributed model is less than lumped data models. On the other hand large number of 

input variables increased the complexity of the model and reduced the performance.  The 

results showed that ANN has resulted in better scenario during training as well testing than 

that of MLR models.  It is observed that the performance of the models has been increased by 

introducing choice of membership function in ANFIS models.  It is concluded that the poor 

performance of the ANNs in comparison with the ANFIS may be due to the lack of 

explanatory power.  LGP model captured linear as well as non-linear inflow accurately than 

ANN and ANFIS.  The reason could be that LGP can automatically select input and 

appropriate relationship and thus produced parsimonious results.  LGP models responded well 

to most fluctuations within the data and provided the closest mapping for peak inflows.  It is 

concluded that the capability of LGP to generate innumerable new values and assess their 

usefulness efficiently seems to give it an edge over the ANN and ANFIS models.  



   

Chapter 6 

Multi-Objective Optimization of a Multi-Reservoir System 

6.1 General 

Irrigated agriculture is the largest consumer of water and has high significance in developing 

countries like India, since majority of the peoples depend on it.  However, the uncertainty 

over rainfall and uneven distribution of water causes serious challenge to agriculture.  The 

temporal variation in water requirement for different crops under multiple canals calls for an 

efficient operation of an irrigation system, especially for large scale irrigation projects.  Thus, 

irrigation water management is becoming a key issue in sustainable agricultural development.  

In case of multi-reservoir systems, the sustainability in irrigation may be achieved by sharing 

water among the reservoirs.  In most of such cases, water is transferred from the upstream 

reservoirs to cater the demands at the downstream reservoir.  This intra basin water sharing 

necessitates an integrated operation of multi-reservoir system rather than considering them as 

an individual reservoir system.  This urges the planners to arrive at an optimal crop plan for 

integrated operation of multi-reservoir system through efficient management of irrigation 

demands under various canals.  Thus, optimizing the operations of a multi-reservoir irrigation 

system for an integrated operation has become essential, especially in India.  This chapter 

describes the development and application of simulation and optimization models for an 

integrated operation of multi-reservoir system namely Kukadi Irrigation Project (KIP), 

Maharashtra, India. 
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6.2 Simulation Model for Crop Planning 

The importance of each components of a system can be studied by simulating the system for 

various scenarios using a simulation model.  Hence, a monthly simulation model is developed 

to analyse the behaviour of the KIP multi-reservoir system, especially to study the intra basin 

water transfer based on the standard operating policy (SOP).  To study the existing operation, 

the simulation model first reads the input such as inflow, initial storage and crop area under 

each canal.  The available storage for each reservoir is then estimated by detecting the 

evaporation and losses.  Then, gross water requirement for each canal at the canal head is 

estimated from the net water requirement and the crop area under each canal incorporating the 

transmission losses.  Thus, the total irrigation demand is estimated based on the crop area 

planned as per KIPR (1990).  The releases are then made according to the SOP as per the 

demand for each canal in a reservoir for the time period ‘t’.  If the available water is less than 

the demand, then the deficits are estimated for each canal.  The possibility of intra basin water 

transfer is then checked and released.  Finally, the surplus and final storage for each reservoir 

are estimated.  This procedure is repeated for all the upstream reservoirs.  The water transfer 

from the upstream reservoir is added with the inflow to the downstream reservoir while 

estimating the available storage and releases are made as per SOP.  This procedure is repeated 

for total simulation period.  The behaviour of the system based on its long term operation is 

assessed using the statistical performance indices such as reliability, resilience and 

vulnerability.  The results of the simulation model are discussed in the following section. 

6.2.1 Results of the Simulation Model 

Kukadi Irrigation Project (KIP) is a complex system with five reservoirs and ten canals.  

Dimbhe, Wadaj, Manikdoh and Pimpalgaon Joge are the upstream reservoirs and are in 

parallel to each other.  Yedgaon is at the downstream of these reservoirs and is in series with 

all the upstream reservoirs.  Almost 60% of the cultivable area in the KIP is irrigated through 

Kukadi left bank canal (KLBC) from Yedgaon reservoir.  However, the water available in 

Yedgaon reservoir is not sufficient to cater the irrigation demands of KLBC on its own.  

Therefore, water is transferred from all the upstream reservoirs to the Yedgaon reservoir 

through canals and rivers.  This intra basin water allocation makes the system complex.  The 

present simulation model is developed to study the multi-reservoir irrigation releases and the 

water transfer releases in the system.  The reservoir operations are simulated for the 
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commonly available eleven years of observed inflow data.  The releases to the canals and the 

end month storage levels of each reservoir resulted from the simulation model are discussed 

below.  

The results of monthly irrigation releases to all the ten canals in KIP from the simulation 

model is shown in Figure 6.1.  It is observed that all the canals have satisfied the irrigation 

demands during most of the time periods.  It is also observed that there is clear distinction of 

releases between two seasons, namely Kharif (Jun – Sep) and Rabi (Oct – Feb) in all the 

canals.  It is observed that the releases during Rabi season are higher than Kharif, since the 

crop area assigned during Rabi is higher than Kharif season as per the project proposal.  Also, 

the rainfall during Kharif season makes less water requirement for irrigation.  It is observed 

that MLBC and KLBC have frequently resulted in deficit during some months due to 

inadequate inflow and less storage.  This deficit occurred mostly during the Rabi season (non-

monsoon season).  The failure of KLBC shows that the water transfer from the upstream 

reservoirs is not optimal and also not at appropriate time.  It is also to be noted that more 

water cannot be transferred to the Yedgaon reservoir during monsoon season because of its 

less storage capacity.  This calls for an efficient reallocation of water transfer from one 

reservoir to other reservoir, both spatially as well as temporally.  This efficient spatial and 

temporal reallocation can be achieved through multi-objective reservoir optimization model. 

The reliability of irrigation releases from the reservoirs of KIP system is given in Table 6.1.  

The time reliability shows that the DRBC, DLBC, GBC, MBC, WRBC, MFC, PLBC and PC 

of upstream reservoirs have satisfactorily released the irrigation demands.  However, the time 

reliability of MLBC under major upstream reservoir Manikdoh is low indicating the releases 

are not timely in spite of having good volume reliability.  The reliability of KLBC under 

Yedgaon reservoir is very less compared to other reservoirs in the system.  This shows that 

most of the time, it has not satisfied the irrigation releases.  It can also be inferred that the 

water transfer from the upstream reservoir is not at appropriate time and temporal allocation 

need to be revised. 

The mean and maximum resilience of the canals in KIP system are given in Table 6.1.  A 

resilience index close to one indicates that the system is capable to recover quickly from a 

failure state and vice versa.  The resilience index of canals of Dimbhe reservoir varies 

significantly.  Wadaj reservoir canals have high resilience than other canals in the system. 
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Figure 6.1 Results of monthly irrigation releases to all the ten canals in KIP from the 

simulation model 
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This shows that these canals have failed only in one month and the canals are likely return to 

the satisfactory state quickly.  Hence, the reliability and resilience of Wadaj reservoir canals 

are higher compared to other canals.  The canals of Manikdoh and Pimpalgaon reservoirs 

have very low resilience indices.  The KLBC under Yedgaon reservoir has the least resilience 

compared to the other canals in the system.  This shows that the failure occurred very 

frequently and probable return to satisfactory state is also slow.  These results indicate that 

more water need to be allocated to KLBC.  

The mean and maximum vulnerability of the canals and in KIP system is given in Table 6.1.  

The vulnerability indices of canals under Dimbhe reservoir varies significantly for each canal.  

Among the four canals under Dimbhe, DRBC is having higher vulnerability, since it irrigates 

more area.  The canals under Wadaj reservoir is having less vulnerability index compared to 

other canals in the system.  The vulnerability index shows that the KLBC is highly vulnerable 

with a maximum vulnerability of 117.53 × 106 m3.   

Table 6.1. Reliability, resilience and vulnerability indices of KIP canals for irrigation 

releases 

Canals 
Dam Reliability Resilience Vulnerability (106 m3) 

Time Volume Mean Maximum Mean Maximum 
DRBC Dimbhe 0.98 0.98 0.67 0.50 8.81 8.83 
DLBC Dimbhe 0.97 0.97 0.50 0.50 2.46 3.05 
GBC Dimbhe 0.97 0.97 0.75 0.50 2.90 5.02 
MBC Dimbhe/Wadaj 0.94 0.97 0.88 0.50 5.22 17.42 
WRBC Wadaj 0.99 0.99 1.00 1.00 0.22 0.22 
MFC Wadaj 0.99 0.99 1.00 1.00 2.16 2.16 
MLBC Manikdoh 0.75 0.91 0.30 0.20 1.46 4.37 
PLBC Pimpalgaon 0.93 0.98 0.33 0.17 6.84 13.57 
PC Pimpalgaon 0.93 0.97 0.33 0.17 1.37 3.07 
KLBC Yedgaon 0.70 0.90 0.28 0.14 56.72 117.53 

 

The reliability, resilience and vulnerability indices of the reservoirs in KIP with respect water 

transfer to Yedgaon reservoir is given in Table 6.2.  Dimbhe and Manikdoh are the two 

reservoirs from where the major quantity of water is transferred to the Yedgaon reservoir.  

From Table 6.2, it is found that three reservoirs (Dimbhe, Wadaj and Pimpalgaon) have 

satisfactorily succeeded in water transfer, except Manikdoh.  The performance indices show 

that the water transfer from Manikdoh is not as per the demand because of less inflow in to 

the reservoir.  The time reliability index of Manikdoh shows that the water transfer is not 
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timely.  This may be due to the less rainfall and inflow in the catchment area of Manikdoh 

reservoir (Siddamal and Birajdar, 2012).  The mean and maximum resilience index is also low 

compared to other reservoirs.  A very high vulnerability of 114.35 × 106 m3 has been observed 

for Manikdoh reservoir, which is around 40% of live storage capacity.  Dimbhe reservoir has 

also resulted in a high vulnerability next to Manikdoh.  These two are the major reservoirs 

which significantly contributed the water transfer to the Yedgaon reservoir. 

 

Table 6.2. Reliability, resilience and vulnerability indices of KIP dams for Yedgaon 

water transfer 

Dam 
Reliability Resilience Vulnerability (106 m3) 

Time Volume Mean Maximum Mean Maximum 
Dimbhe 0.91 0.88 0.50 0.33 43.67 92.43 
Wadaj 0.99 0.99 1.00 1.00 2.24 2.24 
Manikdoh 0.59 0.72 0.24 0.14 60.30 114.35 
Pimpalgaon 0.94 0.92 0.38 0.20 0.99 1.49 

6.3 Formulation of Optimal Crop Planning Model  

The spatial and temporal variation in irrigation water requirement and its increasing demand 

calls for an efficient integrated operation and management of multi-reservoir irrigation 

system.  A suitable cropping pattern and optimal allocation of water for various crops is 

required for sustainable operation of multi-reservoir irrigation system.  Hence, an optimal 

crop planning model has been formulated to arrive at a sustainable crop planning for the 

integrated operation of the multiple reservoirs in KIP system. 

6.3.1 Multi-Objective Functions 

In the present study, two objectives, viz maximizing net benefits and maximizing the crop 

production from the crops cultivated in the command area of KIP system are considered.  

These two objectives are widely used as multi-objective functions in deriving optimal crop 

planning studies (Maji and Heady, 1980; Raju and Duckstein, 2003).  These two objectives 

are also conflicting because, the maximum crop production may not yield maximum net 

benefit but that crop may be a sociologically relevant crop.  These two objectives are 



 

173 
 

subjected to various physical and economic constraints.  The multi-objectives and constraints 

formulated for KIP are explained in the following section. 

6.3.1.1 Objective 1: Maximizing the Net Benefits 

The first objective is to maximize the net benefit obtained by growing multiple crops under 

various canals of KIP system during both Kharif and Rabi seasons.  It can be expressed as: 

Maximize  
  


10

1

13

7
,

10

1

6

1
,

j i
cii

j i
cii ARCRAKCKNB    (6.1) 

where i = Crop index [1 = Jowar Hybrid (K), 2 = Bajra Hybrid (K), 3 = Paddy (K), 4 = 

Groundnut (K), 5 = Chillies (K), 6 = Vegetables (K), 7 = Wheat (R), 8 = Jowar Local (R), 9 = 

Jowar Hybrid (R), 10 = Jowar Rabi (Rattoon) (R), 11 = Peas (R), 12 = Vegetables (R) and 13 

= Potatoes (R), K = Kharif, R = Rabi].   

NB = Total Net benefits (Indian Rupees)  

CKi = Gross benefits from the Kharif crop ‘i’ from the command area of KIP 

CRi = Gross benefits from the Rabi crop ‘i’ from the command area of KIP   

The net benefits are estimated after deducting the appropriate input charges from the gross 

benefits.   

AKi,c = Area of Kharif crop ‘i’ grown in the command area of canal ‘c’  

ARi,c = Area of Rabi crop ‘i’ grown in the command areas of canal ‘c’  

c = canal index [1= Dimbhe Right Bank Canal (DRBC), 2 = Dimbhe Left Bank Canal 

(DLBC), 3 = Ghod Branch Canal (GBC), 4 = Meena Branch Canal (MBC), 5 = Wadaj Right 

Bank Canal (WRBC), 6 = Meena Feeder Canal (MFC), 7 = Manikdoh Left Bank Canal 

(MLBC), 8 = Pimpalgaon Joge Canal (PLBC), 9 = Pushpawathi Canal (PC), 10 = Kukadi Left 

Bank Canal (KLBC)] 
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6.3.1.2 Objective 2: Maximizing the Crop Production 

The second objective of the multi-objective optimization is to maximize the production of 

various crops from the command area of KIP system grown during Kharif and Rabi seasons 

and is given by 

Maximize  
  


10

1

13

7
,

10

1

6

1
,

c i
cii

c i
cii ARYAKY CP     (6.2) 

Yi = average yield of the crop ‘i’ in tonnes/ha. 

6.3.2 Constraints 

The above formulated objective functions are subjected to the following constraints. 

6.3.2.1 Seasonal Crop Area Constraint 

The total area under various crops should not be more than the total area available for 

cultivation in command area during different crop seasons.  The total sowing area constraint 

during Kharif and Rabi seasons is given by 

During Kharif season: 

K
c i

ci CCAAK 
 

10

1

6

1
,         (6.3) 

During Rabi season: 

R
c i

ci CCAAR 
 

10

1

13

7
,         (6.4) 

 

where CCAK and CCAR is the maximum area available for cultivation during Kharif and Rabi 

seasons respectively. 
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6.3.2.2 Canal Area Constraint 

The total crop area under each canal should not be more than the maximum area available for 

irrigation under that canal. 

During Kharif Crops: 





6

1
,

i
cci CCAKAK     c = 1,…,10   (6.5) 

During Rabi Crops : 





13

7
,

i
cci CCARAR     c = 1,…,10   (6.6) 

where CCAKc and CCARc is the maximum area available under each canal for cultivation 

during Kharif and Rabi seasons respectively. 

6.3.2.3 Minimum Sowing Area Constraint 

The minimum crop area constraint is given to ensure that all the crops in the existing cropping 

pattern and also mentioned in the project report (KIPR, 1990) enters into optimal cropping 

pattern.  These crops are staple crops required to fulfil the sociological requirements.  The 

minimum sowing area constraint for staple crops are given by: 

During Kharif season: 

min
,, cici AKAK     i = 1,…,6; c = 1,…,10   (6.7) 

During Rabi season: 

min
,, cici ARAR      i = 7,…,13; c = 1,…,10  (6.8) 

where min
,ciAK and min

,ciAR are the minimum area to be cultivated under crop ‘i’ in canal ‘c’ 

during Kharif and Rabi seasons respectively. 
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6.3.2.4 Crop Water Requirement Constraint 

The water requirement for various crops under each canal is estimated by multiplying the 

gross irrigation requirement (WRi,t) of the crop ‘i’ with its corresponding area during the time 

period ‘t’.  The net irrigation requirement is estimated using Modified Penman method (Given 

in Table 4.3) and gross irrigation requirement is estimated after accounting for water loss 

during transmission (KIPR, 1990).  The efficiency of different canals is incorporated 

accordingly.  The crop water requirement constraint covering two seasons is given in Eq. 6.9 

and Eq. 6.10: 

For Kharif season: 





6

1
,,,

i
citict AKWRR     t = 1,…,4; c = 1,…,10  (6.9) 

For Rabi season: 





13

7
,,,

i
citict ARWRR     t = 5,…,8; c = 1,…,10  (6.10) 

where Rt,c is the release to canal ‘c’ during the time period ‘t’, WRi,t is the gross irrigation 

requirement for crop ‘i’ during the time period ‘t’, AKi,c and ARi,c are the area of crop ‘i’ 

during Kharif and Rabi seasons respectively. 

6.3.2.5 Canal Capacity Constraint 

Irrigation release from the reservoir during any time period ‘t’ should not be more than the 

canal carrying capacity.  This constraint is given as: 

cct CCCR ,      t = 1,…,12; c = 1,…,10 (6.11) 

where CCCC is the carrying capacity of the canal ‘c’. 

6.3.2.6 Reservoir Evaporation Constraint 

The evaporation loss (En,t) from the reservoir ‘n’ during the period ‘t’ is expressed as a 

function of initial and final storage during that particular time period (Jothiprakash et al., 

2011a).  This constraint is expressed as:  
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 
tn

tntn
tntn b

SS
aE ,

1,,
,, 2




     n = 1,…,5; t = 1,…,12  (6.12) 

where an,t and bn,t are the regression co-efficient for the reservoir ‘n’ during the time period ‘t’ 

estimated by the regression analysis.  Sn,t and Sn,t+1 are the initial and final storages of the 

reservoir ‘n’ during the time period ‘t’. 

6.3.2.7 Mass Balance Constraint 

The mass balance constraint balances the input and output of each reservoir during each time 

period ‘t’.  This continuity constraint applied to each reservoirs is given as:  

Dimbhe:  

tttttttttt YROERRRRISS ,1,1,1,4,3,2,1,1,11,1   t = 1,…,12  (6.13) 

Wadaj: 

tttttttt YROERRISS ,2,2,2,6,5,2,21,2    t = 1,…,12  (6.14) 

Manikdoh: 

ttttttt YROERISS ,3,3,3,7,3,31,3     t = 1,…,12  (6.15) 

Pimpalgaon Joge: 

tttttttt YROERRISS ,4,4,4,9,8,4,41,4    t = 1,…,12  (6.16) 

The mass balance constraint applied to Yedgaon reservoir is given in Eq. 6.17.  This reservoir 

includes the intra basin water transfer as well as surplus from upstream reservoir as input 

apart from inflow from its own catchment. 

Yedgaon: 

ttt
n

tnn
n

tnnttt OEROYRISS ,5,5,10

4

3
,

4

1
,,5,51,5  


   t = 1,…,12  (6.17) 
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In the above equations, Sn,t is the initial storage of reservoir ‘n’ during the time period ‘t’; 

Sn,t+1 is the final storage of reservoir ‘n’ during the time period ‘t’; In,t is the inflow in to the 

reservoir ‘n’ during the time period ‘t’; On,t is the overflow from reservoir ‘n’ during the time 

period ‘t’; En,t is the evaporation from reservoir ‘n’ during the time period ‘t’; Rc,t is the 

release to the canal ‘c’ during the time period ‘t’; YRn,t is the water transfer from upstream 

reservoirs ‘n’ to Yedgaon reservoir during the time period ‘t’; ηn and γn are the transmission 

efficiency of canals and rivers of reservoir ‘n’ (KIPR, 1990).  

6.3.2.8 Minimum and Maximum Storage Constraint 

Reservoir storage during any time period should not be more than the capacity of the 

reservoir, and also should not be less than the dead storage.  This physical constraint is given 

as: 

max,,min, ntnn SSS      n = 1,…,5; t = 1,…,12  (6.18) 

where Sn,min and Sn,max are the dead storage and capacity of reservoir ‘n’. 

6.3.2.9 Overflow Constraint 

The overflow occurs when the storage exceed the maximum storage (capacity) of the 

reservoir.  If no constraint on overflow is included in the LP model, it may result in overflow 

even when the reservoir storage is less than the capacity and hence the overflow constraint 

developed by Chávez-Morales (1987) is used in the present study.  This overflow constraint is 

given as: 

max,1,, ntntn SSO       n = 1,…,5; t = 1,…,12  (6.19) 

0, tnO      n = 1,…,5; t = 1,…,12  (6.20) 

where On,t is the overflow from the reservoir ‘n’ during the time period ‘t’.  

As explained in the methodology chapter, the above developed optimization model is solved 

using different techniques.  Initially, both the objectives of the crop planning model are solved 

individually using linear programming technique.  This LP optimization model has 178 
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variables and 712 constraints.  Then, the fuzziness in the objectives is considered and solved 

using multi-objective fuzzy linear programming approach.  Both the objectives are 

simultaneously solved using multi-objective evolutionary algorithms.  Then, the chaos is 

coupled with multi-objective evolutionary algorithms and used for deriving optimal crop 

plans.  The results obtained from all the models are inter-compared and discussed in the 

following section. 

6.4 Multi-objective Fuzzy Linear Programming Model 

In the present study, the objectives are considered as imprecise variable and modelled using 

multi-objective fuzzy linear programming (MOFLP) approach.  The objectives of the LP 

model are converted to a fuzzy variable using a linear membership function over the tolerance 

range (Zimmermann, 1996).  The linear membership function for an objective function ‘Z’ is 

given as: 
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)(      (6.21) 

where ZU and ZL are maximum and minimum values of the objective functions obtained from 

the LP model.  The LP model is transferred to MOFLP model with the objective of 

maximizing the degree of satisfaction.  

Maximise λ         (6.22) 

Subject to 

 )()( XjZ      j = 1,2,...   (6.23) 

where λ is the degree of satisfaction and 0 ≤ λ ≤ 1; j is the number of objectives.  In addition 

to this all other existing constraints (Eq. 6.3 to 6.20 of LP model) has to be used while solving 

MOFLP model.  Thus, the first objective of maximizing the net benefits is converted in to a 

fuzzy constraint as:  
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



LU

L

NBNB

NBNB
        (6.24) 

The second objective of maximizing the crop production is converted in to a fuzzy constraint 

as:  





LU

L

CPCP

CPCP
        (6.25) 

In the above equations, λ is the degree of satisfaction which varies between 0 and 1.  NBU, 

NBL are the upper and lower limits of net benefits.  CPU and CPL are the upper and lower 

limits of crop production.  The values of NBU, NBL, CPU and CPL are obtained from the 

results of crisp LP model.  In addition to the above fuzzy constraints, all the constraints 

considered in LP model is also considered while solving the fuzzy model. 

6.5 Results of MOFLP Optimal Crop Planning Model 

Using the above developed optimization model, optimal crop planning has been derived for 

the sustainable integrated operation of Kukadi multi-reservoir irrigation system using multi-

objective fuzzy linear programming (MOFLP) approach.  The optimization model is solved 

using global solver in Language for Interactive General Optimization (LINGO) package.  The 

global solver combines a series of range bounding and range reduction techniques within a 

branch and bound framework to find global solutions to non-convex non-linear programs 

(Lingo, 2006).  As a first step, the two individual objectives namely (i) maximizing the net 

benefits and (ii) maximizing the crop production from the crops grown in the command area 

of KIP are optimized separately using crisp linear programming (LP) technique for different 

dependable inflow levels.  The objectives are optimized separately for three inflow scenarios, 

(i) 50% dependable inflow scenario, (ii) 75% dependable scenario and (iii) 90% dependable 

inflow scenarios using deterministic LP.  The results of the LP model for various inflow 

scenarios are given in Table 6.3.  From the table, it is found that both the net benefits and crop 

production are high for 50% dependable inflow level.  The maximum net benefit obtained is 

Rs. 2753.28 Millions ($45.77 Millions) and crop production is 2031.90 thousand tonnes for 

50% dependable inflow level.  The 75% dependable inflow resulted in a net benefit of Rs. 
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1893.83 Millions ($31.48 Millions) and 1385.01 thousand tonnes of crop production.  On 

comparing with 50% dependable inflow scenario, both the net benefits and crop production 

are decreased by 31% in 75% dependable inflow scenario.  The 90% dependable inflow has 

resulted a net benefit of Rs. 928.79 Millions ($15.44 Millions) and 574.33 thousand tonnes of 

crop production.  On comparing with 50% dependable inflow scenario, the net benefit is 

decreased by 66.27% and crop production by 71.73% in 90% dependable inflow scenario.  

Similarly, there is a reduction of   50.96% net benefits and 58.53% crop production with 90% 

dependable inflow scenario compared to 75% dependable inflow scenario.  The reduction in 

crop area as well as crop production is due to the reduction in the inflow.   

 

Table 6.3. Resulted net benefits and crop production from LP models 

Objectives Net Benefits ( Million Rupees) Crop Production ( 1000 Tonnes) 

Inflow 50% 75% 90% 50% 75% 90% 
Objective value 2753.28 1893.83 928.79 2031.90 1385.01 574.33 

1$ = Rs. 60.14, As on 27th March 2014 
 

The multi-objectives developed in the present study are considered as fuzzy variables and are 

fuzzified using linear membership function as shown in Figure 6.2.  From the results of crisp 

LP models, the upper and lower limits for the fuzzified equation of net benefits and crop 

production are fixed for MOFLP model.  Then the fuzzified equations are considered as 

constraints and the fuzzy model is solved for maximizing the level of satisfaction (λ) along 

with other constraints using 75% dependable inflow.  The MOFLP model has resulted in a 

degree of satisfaction of 0.46 for the integrated operation of multi-reservoir system with the 

total net benefit of Rs. 1909.92 Millions ($31.75 Millions) and total crop production of 

1191.30 thousand tonnes.  It is found that the net benefit is decreased by 30.52% and crop 

production by 41.37% in MOFLP model compared to 50% dependable inflow scenario of 

crisp LP model.  On comparing the results with the 75% dependable inflow, there is an 

increase of 1% in net benefits and 13.99% decrease in crop production.  It is also found that 

both the net benefits and crop production are significantly more by 51.37% in MOFLP model 

compared to 90% dependable inflow scenario LP model.   
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Figure 6.2. Membership functions used for (a) Net Benefits and (b) Crop Production 

 
 

6.5.1 Optimal Crop Area Resulted from LP and MOFLP Models 

The resulted optimal crop area under various canals from LP and MOFLP models are given in 

Table 6.4.  Overall, the objective II has resulted in higher total crop area than objective I for 

50% and 75% dependable inflow scenario.  On contradicting to the project proposal, the total 

crop area resulted during Kharif season is higher than Rabi season for all the three inflow 

scenarios.  This may be due to less water requirement for crops during Kharif season, because 

of more contribution from rainfall.  It is seen that in LP model, both the 50% and 75% 

dependable inflows resulted in same crop area for most of the canals, except PLBC, PC and 

KLBC.  This shows that the upstream reservoirs are capable of irrigating optimal area up to 

75% dependable inflow.  Further increase in the dependability reduces the crop area.  The 

50% dependable inflow has resulted in a maximum irrigation intensity of 137.67%.  The 

MOFLP model has resulted in an irrigation intensity of 102.18% with a total crop area of 

149232.10 ha.  Since, the objectives are considered as fuzzy in MOFLP model, there is a 

reduction in total crop area and irrigation intensity compared to LP model.  The MOFLP 

model also resulted higher crop area during Kharif (86429.31 ha) than Rabi (62802.79 ha). 

 
 



 

183 
 

Table 6.4. Resulted total crop area (ha) for each canal by LP and MOFLP models 

Objective 
LP Model 

MOFLP 
Maximization of Net Benefits Maximization of Crop Production 

Inflow 50% 75% 90% 50% 75% 90% 75% 
DRBC 22306.54 22306.54 15567.43 22306.54 22306.54 16842.55 20605.07 
DLBC 4078.05 4078.05 4078.05 4078.05 4078.05 4078.05 3462.33 
GBC 6628.52 6628.52 4633.10 6628.52 6628.52 4633.10 6001.90 
MBC 23006.73 23006.73 17455.51 23006.73 23006.73 16064.98 21270.02 
WRBC 537.35 537.35 385.20 550.36 537.35 385.20 503.45 
MFC 5525.75 5525.75 3814.55 5525.75 5525.75 3814.55 4397.95 
MLBC 3474.93 3474.93 2423.55 3474.93 3474.93 2423.55 3038.95 
PLBC 17055.34 11970.40 6560.70 17055.34 11855.30 6560.70 11954.78 
PC 2375.72 2073.40 991.80 2375.72 2313.34 991.80 1998.89 
KLBC 110894.96 73190.58 63963.19 116073.57 75145.09 63963.19 75998.76 
Kharif 116217.24 89076.61 62305.12 124111.53 93090.24 61288.82 86429.31 
Rabi 79666.65 63715.63 57567.96 76963.98 61781.35 58468.85 62802.79 
Total 195883.89 152792.24 119873.08 201075.51 154871.59 119757.67 149232.10 
Irrigation 
Intensity (%) 

134.12 104.61 82.08 137.67 106.04 82.00 102.18 

The resulted optimal crop area from LP and MOFLP models for various crops is given in 

Figure 6.3.  The crop index 1-6 shows the Kharif crops and 7-13 are Rabi crops.  All the crops 

proposed in the project report (KIPR, 1990) have entered the optimal solution because of 

minimum sowing area constraint.  It is observed that out of the total crop area, around 60% 

resulted during Kharif season and remaining 40% resulted during Rabi season for all the LP 

and MOFLP models.  From the figure, it is observed that there is a wide variation in optimal 

area for different inflow scenarios for various crops.  Only Paddy and Chillies during Kharif 

season and Jowar rattoon during Rabi season have same area irrespective of inflow scenarios.  

It is also found that these crops have resulted only the minimum sowing area due to the more 

crop water requirement.  All the models have resulted in a higher vegetable crop area during 

Kharif season, since the crop water requirement is less and high net return compared to other 

water intensive crops.  Thus, there is wide variation in area for different inflow scenarios.  

Among Kharif crops, Vegetables resulted around 20%, Jowar Hybrid around 14% and 

Groundnut around 12% of total crop area in MOFLP model.  Other crops resulted less than 

3% of total crop area during Kharif in MOFLP model.  Among Rabi crops, wheat has resulted 

in more area followed by Jowar local and Jowar hybrid.  All the models have resulted in same 

area for Jowar rattoon during Rabi season.  Among Rabi crops, both Wheat and Jowar local 

resulted around 12% and Jowar Hybrid resulted 10% of total crop area in MOFLP model.  All 

other crops accounts for less than 2% in MOFLP model during Rabi season.   
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Figure 6.3. Resulted optimal total crop area for LP and MOFLP models
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6.5.2 Monthly Irrigation Releases from LP and MOFLP Models 

The optimal releases resulted from LP and MOFLP model to different canals during various 

time periods are given in Figure 6.4.  The releases during Kharif season are higher than the 

releases during Rabi, since all the models have resulted higher crop area during Kharif season 

than Rabi.  This may be due to less crop water requirement during Kharif season because of 

the contribution from rainfall.  For DRBC, DLBC, GBC, MBC, WRBC and MLBC, there is 

clear distinction of two groups.  One is all models except 90% dependable inflow and second 

group is 90% dependable inflow.  This shows that theses canals are capable of irrigating same 

area up to 75% dependable inflow and further decreases in inflow reduces the crop area and 

releases.  For all these canals, the MOFLP model follows the first group.  It is also observed 

that there is large variation in releases among models occurred in MLBC, PLBC, PC and KLB 

canals.  Thus, these are the canals which are mostly affected by decrease in inflow in to the 

reservoir.  The MOFLP model has resulted in higher releases during Rabi season than Kharif 

season for KLBC.  This may be due to that the resulted crop area during Kharif and Rabi are 

almost same for KLBC and the releases are less in Kharif due to rainfall.  It is also observed 

that all the models have not resulted in any canal release during non-cropping season.  

 

6.5.3 Water Transfer to Yedgaon Reservoir from LP and MOFLP Models 

The releases to Yedgaon reservoir from different models are given in Figure 6.5.  From the 

figure, it is found that all the models have resulted significant water transfer during Kharif and 

Rabi seasons, but for only one month in each season.  During Kharif season, releases are 

significant in July month and in December during Rabi season.  However, there is a wide 

variation in releases among the models.  This is due to the variation in the resulted crop area.  

Dimbhe and Manikdoh have contributed significantly in water transfer.  Wadaj has 

contributed equally during the July and December.  The contribution from Dimbhe is high 

during Kharif season and from Manikdoh during Rabi season.  Pimpalgaon has resulted very 

less water transfer, mostly during Kharif (starting of monsoon season) indicating that it is just 

a self sufficient reservoir. 
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Figure 6.4. Resulted optimal releases to various canals from different LP and MOFLP 

models 
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Figure 6.5. Water transfer to Yedgaon resulted from different LP and MOFLP models 

6.5.4 End of Month Storage Levels from LP and MOFLP Models 

The resulted final storage levels from different models for the five reservoirs in the KIP are 

given in Figure 6.6.  All the models have resulted in high storage during monsoon and the 

storage gradually depletes during the non-monsoon season.  This shows that all the reservoirs 

are intermittent reservoirs which receive inflow during the monsoon season.  Even though, the 

storage levels are higher during monsoon, none of the reservoir except Yedgaon resulted in 

overflow.  It is observed that 50% dependable inflows have resulted in higher storage levels 

due to high inflow.  Also, the high storage in 50% dependable inflows scenario has resulted in 

more evaporation.  The storage levels resulted from MOFLP model are almost similar to that 

of 75% dependable level.  The storage levels significantly vary for all reservoirs, except 

Wadaj.  The variation in storage level of Yedgaon reservoir during monsoon season is due to 

delay and variation in receiving the water from the upstream reservoirs.  It is also to be noted 

that the live storage of Yedgaon is very less compared to other reservoirs and hence it resulted 

in overflow during monsoon season.  Thus, more water cannot be stored in Yedgaon reservoir 

for irrigation during Rabi season.  The storage of Yedgaon reservoir resulted from all LP 
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models is same during non-monsoon periods, since Yedgaon completely depends on upstream 

reservoir releases to cater the demands for Rabi season. 

 

Figure 6.6. Resulted end of month storage level for various dams from different LP and 

MOFLP models 
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6.5.5 Simulation of Optimal MOFLP Results 

The optimal crop area resulted from MOFLP model is simulated for 11 years of observed 

monthly inflow to evaluate the performance of the results.  The various performance measures 

such as MFID, AFID, AAID and PAID reported by Jothiprakash and Shanthi (2009) is used.  

Monthly Frequency of Irrigation Deficit (MFID) is the ratio of the number of months deficit 

occurred to the total number of simulated months.  Monthly Average Irrigation Deficit 

(MAID) is the ratio of the sum of the monthly deficit occurred in each month to the total 

number of simulated deficit months.  Percentage Monthly Irrigation Deficit (PMID) is the 

ratio of the monthly average irrigation deficit to the monthly demand.  Annual Frequency of 

Irrigation Deficit (AFID) is the ratio of number of years deficit occurred to the total simulated 

years.  Annual Average Irrigation Deficit (AAID) is the ratio of sum of the irrigation deficit 

occurred in each year to number of deficit year.  Percentage Annual Irrigation Deficit (PAID) 

is the ratio of annual average irrigation deficit to the total annual demand.  In addition, 

reliability, resilience and vulnerability are estimated to evaluate behaviour the optimal policy 

for longer period.  The results of the performance indices are given in Table 6.5.  It is found 

that the optimal crop plans resulted from the MOFLP model has performed well over the 

period of year.  The canals under Dimbhe reservoir failed in only one month out of the total 

simulated 132 months.  The failure occurred in the first month of the simulation period for all 

the canals.  It is also found that the MLBC under Manikdoh has resulted in irrigation releases 

as per the demand throughout the simulation period.  This shows that the reservoir is a surplus 

reservoir and also significantly contributes to the water transfer to Yedgaon reservoir.  Only 

the PLBC, PC and KLBC have resulted in deficits around 7 months out of 132 months of 

simulation.  However, the MAID of PLBC and PC is very less and deficit occurred during 

June and February.  Only KLBC resulted in irrigation deficits for 6 years with AAID of 12.79 

× 106 m3. 

The reliability, resilience and vulnerability for irrigation releases of various canals are given 

in Table 6.6.  The time reliability shows that all the canals have satisfactory irrigation releases 

throughout the simulation period.  Even though KLBC has resulted in irrigation deficits, the 

time reliability is higher.  This shows that failure occurred only in a particular month every 

year.  Even though the reliability of the canals under Dimbhe reservoir are high, vulnerability 

index of DRBC show that they are slightly vulnerable if failure occurs, since it irrigates more 

area.  The MLBC under Manikdoh reservoir shows no vulnerability since it has satisfied the 
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irrigation demand in all the simulated period.  The vulnerability index shows that KLBC is 

most vulnerable than other canals with high vulnerability. 

 

Table 6.5. Performances of MOFLP policies for various canals 

Canals Dam  MFID AFID AAID (106 m3) PAID (%) 
DRBC Dimbhe  1/132 1/11 0.63 0.60 
DLBC Dimbhe  1/132 1/11 0.14 0.75 
GBC Dimbhe  1/132 1/11 0.21 0.68 
MBC Dimbhe/Wadaj  1/132 1/11 0.65 0.60 
WRBC Wadaj  5/132 2/11 0.04 1.72 
MFC Wadaj  6/132 3/11 0.53 2.24 
MLBC Manikdoh  0/132 0/11 0.00 0.00 
PLBC Pimpalgaon  7/132 2/11 1.19 1.76 
PC Pimpalgaon  7/132 2/11 0.18 1.65 
KLBC Yedgaon  7/132 6/11 12.79 2.75 

 

Table 6.6. Reliability, resilience and vulnerability indices of MOFLP policies for various 

canals of KIP 

Canal Dam 
Reliability Resilience Vulnerability (106 m3) 

Time Volume Mean Maximum Mean Maximum 
DRBC Dimbhe 0.99 0.99 1.00 1.00 6.97 6.97 
DLBC Dimbhe 0.99 0.99 1.00 1.00 1.51 1.51 
GBC Dimbhe 0.99 0.99 1.00 1.00 2.32 2.32 
MBC Dimbhe/Wadaj 0.99 0.99 1.00 1.00 7.19 7.19 
WRBC Wadaj 0.96 0.98 0.60 0.50 0.25 0.32 
MFC Wadaj 0.95 0.98 0.50 0.33 1.95 3.17 
MLBC Manikdoh 1.00 1.00 0.00 0.00 0.00 0.00 
PLBC Pimpalgaon 0.95 0.98 0.43 0.20 4.38 7.62 
PC Pimpalgaon 0.95 0.98 0.43 0.20 0.66 1.15 
KLBC Yedgaon 0.95 0.97 0.86 0.50 23.46 36.64 

The reliability, resilience and vulnerability indices of the reservoirs in KIP contributing to 

Yedgaon water transfer is given in Table 6.7.  Dimbhe and Manikdoh are the two reservoirs 

from where the major quantity of water is transferred to the Yedgaon reservoir.  From the 

table, it is found that all the four reservoirs have satisfactorily succeeded in water transfer to 

Yedgaon reservoir.  The time reliability index of all the four reservoirs is above 0.94, which 

shows that the demands are met most of the simulation period.  The volume reliability is also 

high for all the four reservoirs.  A high vulnerability of 15.56 × 106 m3 is observed for 

Dimbhe reservoir.   
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Table 6.7. Reliability, resilience and vulnerability indices of MOFLP policies for 

Yedgaon water transfer 

Dam 
Reliability Resilience Vulnerability (106 m3) 

Time Volume Mean Maximum Mean Maximum 
Dimbhe 0.99 0.99 1.00 1.00 15.56 15.56 
Wadaj 0.94 0.96 0.50 0.33 4.45 9.97 
Manikdoh 0.98 0.99 1.00 1.00 1.49 2.85 
Pimpalgaon 0.95 0.86 0.43 0.20 2.27 3.41 

6.6 Optimal Crop Planning using Multi-objective Evolutionary 
Algorithms 

Application of Multi-objective Evolutionary Algorithm (MOEA) for deriving optimal crop 

plans for Indian scenario very minimal.  In addition, it has been found from the literature 

review that no work has been reported in deriving optimal crop plans for multi-reservoir 

system using MOEA coupled with chaos.  The MOEAs namely, non-dominated genetic 

algorithm (NSGA-II) and multi-objective differential evolution (MODE) algorithm are 

coupled with chaos in deriving optimal crop plans using multi-objective analysis.  The chaos 

technique is introduced in generating initial population, crossover and mutation in NSGA-II 

and is referred as chaotic NSGA-II (CNSGA-II).  In, MODE, the chaos is used in generating 

only in initial population and henceforth referred as chaotic MODE (CMODE).  All the 

models are evaluated with 75% dependable inflow and the results are inter-compared.  

Further, the performances of the best optimal policy among different techniques are assessed 

using a simulation model for longer run, especially for estimating the irrigation deficits.  

6.6.1 Chaotic Non-dominated Sorting Genetic Algorithm–II  

The CNSGA–II uses chaotic initial population generation, tournament selection, chaotic 

simulated binary crossover and chaotic mutation developed by Arunkumar and Jothiprakash 

(2013).  The chaos technique is introduced in simulated binary crossover to enhance the 

search in GA and in mutation to keep the population diversity.  The optimal crossover 

probability for CNSGA-II is fixed by varying it from 0.50 to 0.95 with an increment of 0.05.  

It is found that both the net benefits and crop production is high for a crossover probability of 

0.85.  Both the net benefits and crop production decreases at higher crossover probability 

indicating that the offsprings are different from the parents losing its genetic material.  The 
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mutation probability is fixed as the ratio of the number of variable (Deb, 2001).  The same 

crossover probability and mutation probability are used in simple NSGA-II.   

6.6.2 Chaotic Multi-Objective Differential Evolution Algorithm 

Based on the initial analysis, it is found that the strategy ‘CMODE/rand/2/bin’ is performing 

better among different strategies of MODE, since it satisfied all the constraints and converged 

quickly.  Hence, the strategy ‘CMODE/rand/2/bin’ has been used for all scenarios of both 

CMODE and simple MODE in present study.  The optimal scale factor ‘F’ and crossover 

factor ‘CR’ in MODE is fixed based on sensitivity analysis.  The scale factor (F) is varied 

from 0.1 to 0.5 with an increment of 0.10 while the crossover factor is varied between 0.50 

and 0.90 with an increment of 0.10.  It is found that F of 0.20 and CR value 0.90 resulted in a 

better net benefits and crop production.   

All the techniques used in the study are evaluated up to 1000 generation with a population 

size of 250.  All the constraints are handled by penalty function approach in all the techniques 

applied.  Different penalty values were assumed based on the significance of the constraint 

and heavy penalties are imposed on fitness function upon violation.  All the models are 

optimised repeatedly for several times and only the best optimal solution resulted from each 

technique is reported.  The optimal fitness function values resulted from different techniques 

is given in Table 6.8.   

Table 6.8. Optimal results from different MOEA models 

 
CMODE CNSGA-II MODE NSGA-II 

Net Benefits ( Million Rupees) 1921.77 1918.26 1916.26 1915.09 
Crop Production ( 1000 Tones) 1201.55 1198.35 1196.35 1195.99 
Irrigation Intensity (%) 106.29 104.64 104.57 103.69 
No. of Non-inferior solutions 2 4 2 6 

6.6.3 Optimal Crop Area from Multi-objective Evolutionary Algorithm  

The optimization model is optimized using multi-objective evolutionary algorithms coupled 

with chaos.  The resulted total optimal crop area under various canals is given in Table 6.9.  It 

is seen that almost all MOEAs have resulted in similar cropping pattern.  The CMODE has 

resulted in a maximum irrigation intensity of 106.29% with total crop area of 155241.44 ha.  

The CNSGA-II and MODE have almost resulted in same irrigation intensity around 104%.  
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The NSGA-II has resulted around 103.69% irrigation intensity with a total crop area of 

151436.00 ha.  It is observed that the resulted total crop area during Kharif season is higher 

than Rabi season from all the techniques.  This may be due to water requirement during 

Kharif season is less than Rabi season.  However, there is variation in total crop area among 

the techniques during Kharif season.  The NSGA-II has resulted in higher crop area for Rabi 

season that CNSGA-II and MODE.  However, CMODE has resulted in higher crop area 

during Kharif and Rabi making it as better technique than simple NSGA-II and MODE. 

Table 6.9. Resulted crop area for various canals from MOEA models 

Canals Dam CMODE CNSGA-II MODE NSGA-II 
DRBC Dimbhe 20789.52 20912.60 20749.50 20996.20 
DLBC Dimbhe 2825.71 2656.57 2529.67 2846.60 
GBC Dimbhe 4126.76 4021.06 4106.70 4218.69 
MBC Dimbhe/Wadaj 13165.89 13007.63 13066.30 13176.02 
WRBC Wadaj 566.47 540.92 514.84 572.38 
MFC Wadaj 3716.42 3342.92 3455.46 3739.89 
MLBC Manikdoh 2792.41 2455.37 2601.81 2680.95 
PLBC Pimpalgaon 10482.38 10450.04 9974.86 10495.79 
PC Pimpalgaon 2153.80 2036.01 1957.39 2160.81 
KLBC Yedgaon 94622.09 93413.06 93774.64 90548.68 
Kharif 88678.46 88526.44 87950.42 85100.46 
Rabi 66562.98 64309.74 64780.76 66335.54 
Total 155241.44 152836.18 152731.18 151436.00 
Irrigation Intensity (%) 106.29 104.64 104.57 103.69 

The resulted optimal area for various crops from different models is given in Figure 6.7.  The 

crop index 1-6 shows the Kharif crops and 7-13 are Rabi crops.  All the crops proposed in the 

project report (KIPR, 1990) have entered the crop area because of minimum sowing area 

constraint.  From the figure, it is observed that there is a wide variation in optimal area for 

different techniques for various crops.  All the techniques have resulted in high crop area for 

vegetables during Kharif season.  Around 58% of crop area during Kharif and remaining 42% 

area during Rabi out the total resulted crop area.  On contrary to LP and MOFLP model, it is 

found that the variation in total crop area resulted by different MOEAs is less under each 

canal.  Around 19% of the total crop area is vegetable crops.  Since the crop water 

requirement is less and high net return compared to other water intensive crops.  However, the 

resulted crop area varies among each technique.  Jowar and Groundnut have also resulted in a 

significant crop area around 14% and 11% respectively.  The water intensive crop like Paddy 
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has resulted in only minimum area around 2% of total crop area.  Among Rabi crops, wheat 

and Jowar local have resulted in 11% of total crop area followed by Jowar hybrid for 10% of 

total crop area by different techniques.  All the models have resulted in less acreage for Jowar 

rattoon around 2% of total crop area during Rabi season.  In general, it is observed that all the 

techniques have resulted more acreage for vegetable crop during both Kharif and Rabi 

seasons due to high monetary value and also comparatively less water requirement than other 

crops. 

6.6.4 Monthly Irrigation Releases from MOEA models 

The resulted optimal releases for various canals from different techniques are given in Figure 

6.8.  Since, the variation in resulted crop area is not very significant among different MOEAs, 

the variation is releases also very less among different techniques.  However, there is a wide 

variation in releases during Kharif and Rabi season for different canals.  The canals DRBC 

and KLBC have resulted in a very high crop area during Kharif compared to Rabi season.  

Hence, the releases during Kharif are higher than Rabi season, even though rainfall during 

Kharif season is higher.  The canals, DLBC, GBC, MBC, WRBC, MFC, PLBC and PC have 

resulted more or less equal crop area during Kharif and Rabi season.  Hence, all the 

techniques have resulted in more releases during Rabi season than Kharif season for these 

canals.  This is contrary to MOFLP releases.  It is also observed that the variation in releases 

by different techniques is very less for DLBC, GBC, MBC and PLBC during both Kharif and 

Rabi seasons.  The variation in releases is significant for WRBC during both Kharif and Rabi 

season, due to variation in crop area resulted by different techniques.  There is large variation 

in releases to KLBC during Kharif season from different techniques due to variation in the 

optimal crop area.  However, during the Rabi season all the techniques have resulted in same 

releases, since the crop area is same and also mainly depend on water supplied from the other 

reservoirs.  It is also observed that all the models have not resulted in any release during non-

cropping season. 
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Figure 6.7. Resulted total area for each crop from different MOEA models
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Figure 6.8. Resulted optimal releases to various canals from different MOEA models 
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6.6.5 Water transfer to Yedgaon Reservoir from MOEA models 

The water transfer to Yedgaon reservoir resulted from different MOEA models is given in 

Figure 6.9.  From the figure, it is found that the water transfer from all the reservoirs during 

Rabi season is higher than Kharif season.  Both Dimbhe and Manikdoh have significantly 

contributed water transfer to Yedgaon reservoir.  However, the water transfer from Dimbhe 

reservoir during Kharif season is less compared to other MOEA models.  All the models have 

resulted in similar transfer during Rabi season from Dimbhe and Manikdoh reservoirs.  All 

the MOEAs have resulted water transfer from Wadaj reservoir during most of the time period.  

All the models have resulted water transfer from Pimpalgaon only during Kharif season.  

Unlike MOFLP model, all the MOEA models have resulted in water transfer during most of 

the months indicating the optimal temporal distribution is achieved by MOEAs. 

 

 

Figure 6.9. Water transfer to Yedgaon reservoir resulted from different MOEA models 
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6.6.6 End of Month Storage Levels from MOEA models 

The end of month storage levels resulted from different techniques for all the reservoirs in the 

KIP are given in Figure 6.10.  All the models have resulted in high storage levels during 

monsoon and the storage gradually depletes during the non-monsoon season.  This shows that 

all the reservoirs are intermittent reservoirs which receive inflow only during the monsoon 

season.  The storage level significantly varies for Manikdoh, since it is surplus reservoir and 

highly contributes the water transfer compared to other upstream reservoirs.  For all other 

reservoirs the variation in storage level is minimal.  All the models have resulted similar 

storage levels for Pimpalgaon reservoir without much variation.  The storages level of 

Yedgaon reservoir various during monsoon season for different techniques, however during 

non-monsoon season it is more or less same irrespective of the techniques used.  Thus, 

Yedgaon depends on the other reservoir especially during the non-monsoon season. 

6.6.7 Simulation of Optimal CMODE Results 

The optimal results obtained from CMODE are simulated to evaluate their performance over a 

period of time, since it is has resulted in higher net benefits and crop production compared to 

other techniques.  Various performance measures such as MFID, AFID, AAID and PAID 

reported by Jothiprakash and Shanthi (2009) were used for the evaluation.  In addition, 

reliability, resilience and vulnerability indices are also used to assess the performance.  The 

performance indices of various canals estimated from the simulated model using 11 years of 

data are given in Table 6.10.  It is observed that all canals have performed relatively well over 

the simulated period of time.  The canals under Dimbhe reservoir performed very well and 

failed in only one month during the entire simulation period.  Similarly, the canal under 

Manikdoh reservoir has not failed in any month during the total simulation period.  This 

shows that these two reservoirs are surplus reservoirs and water can be satisfactorily 

transferred to downstream reservoir.  On the other hand, the canals under Wadaj and 

Pimpalgaon reservoirs have failed in few months.  The failure occurred mainly during the 

start of the season in few years where the inflow is very less.  However, the AAID and PAID 

are very less indicating the deficit is very less compared to the demand.  This shows that these 

two reservoirs are self sufficient reservoirs where water can be transferred only when there is 

excess inflow into the reservoir.  The KLBC from Yedgaon reservoir has failed in five 

months.   
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Figure 6.10. Resulted end of month storage levels from different MOEA models 
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The results show that the Yedgaon reservoir releases mostly depends on other reservoir during 

non-monsoon season due to its large command area requirement.  It has resulted in an average 

annual irrigation deficit of 10.45 × 106 m3.  However, this deficit is also very less as the PAID 

is 1.94%.  Thus, these indices shows the optimal policy resulted from CMODE has performed 

very well over the period of time.  The temporal transfer from one reservoir to other reservoir 

is also optimal. 

Table 6.10. Performances of CMODE policies for various canals of KIP 

Canals Dam MFID AFID AAID (106 m3) PAID (%) 
DRBC Dimbhe 1/132 1/11 0.65 0.60 
DLBC Dimbhe 1/132 1/11 0.13 0.77 
GBC Dimbhe 1/132 1/11 0.20 0.79 
MBC Dimbhe/Wadaj 1/132 1/11 0.66 0.83 
WRBC Wadaj 5/132 2/11 0.07 2.08 
MFC Wadaj 6/132 3/11 0.57 2.54 
MLBC Manikdoh 0/132 0/11 0.00 0.00 
PLBC Pimpalgaon 7/132 2/11 1.24 1.95 
PC Pimpalgaon 7/132 2/11 0.23 1.78 
KLBC Yedgaon 5/132 3/11 10.45 1.94 

 

The reliability, resilience and vulnerability indices estimated from simulated releases to 

various canals are given in Table 6.11.  These indices shows that the canals under Dimbhe 

and Manikdoh reservoirs are reliable, since the reliability and resilience indices are high with 

less vulnerability.  All the canals in the system shows a high reliability indicating the optimal 

policy performed very well over the period of time.  Especially, the volume reliability shows 

the deficit is very less.  The canals under Pimpalgaon reservoir is less compared to other 

reservoirs in the system.  The vulnerability of KLBC is higher with a maximum vulnerability 

of 38.97 × 106 m3.  This is quantity can be easily achieved from Dimbhe or Manikdoh through 

excess transfer. 

The reliability, resilience and vulnerability indices of the reservoirs in KIP contributing to 

Yedgaon water transfer is given in Table 6.12.  Dimbhe and Manikdoh are the two reservoirs 

from where the major quantity of water is transferred to the Yedgaon reservoir.  From the 

table, it is found that all the four reservoirs have satisfactorily succeeded in water transfer to 

Yedgaon reservoir.  The time reliability index of all the four reservoirs is above 0.94, which 

shows that the demands are met most of the simulation period.  The volume reliability is also 
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high for all the four reservoir.  The mean and maximum resilience index of Dimbhe is one 

with zero vulnerability indicating that the reservoir is most reliable.  A very high vulnerability 

of 11.71 × 106 m3 is observed for Manikdoh reservoir.   

Table 6.11. Reliability, resilience and vulnerability indices of CMODE policies for 

various canals of KIP 

Canals Dam 
Reliability Resilience Vulnerability (106 m3) 

Time Volume Mean Maximum Mean Maximum 
DRBC Dimbhe 0.99 0.99 1.00 1.00 7.13 7.13 
DLBC Dimbhe 0.99 0.99 1.00 1.00 1.42 1.42 
GBC Dimbhe 0.99 0.99 1.00 1.00 2.17 2.17 
MBC Dimbhe/Wadaj 0.99 0.99 1.00 1.00 7.29 7.29 
WRBC Wadaj 0.96 0.98 0.60 0.50 0.24 0.51 
MFC Wadaj 0.95 0.97 0.50 0.33 2.08 3.69 
MLBC Manikdoh 1.00 1.00 1.00 1.00 0.00 0.00 
PLBC Pimpalgaon 0.95 0.98 0.43 0.20 4.55 7.91 
PC Pimpalgaon 0.95 0.98 0.43 0.20 0.84 1.45 
KLBC Yedgaon 0.96 0.98 0.80 0.50 28.74 38.97 

 

Table 6.12. Reliability, resilience and vulnerability indices of CMODE policies for 

Yedgaon water transfer 

Dam 
Reliability Resilience Vulnerability (106 m3) 

Time Volume Mean Maximum Mean Maximum 
Dimbhe 0.99 1.00 1.00 1.00 0.00 0.00 
Wadaj 0.94 0.97 0.50 0.33 3.15 10.15 
Manikdoh 0.96 0.98 0.60 0.33 10.36 11.71 
Pimpalgaon 0.95 0.95 0.43 0.20 0.61 0.92 

6.7 Closure 

Kukadi Irrigation Project (KIP) is a complex system with five reservoirs among which four 

are in parallel and one in series.  In order to meet the demand at the downstream reservoir, 

water is transferred from the upstream reservoir through rivers and canals.  Dimbhe and 

Manikdoh are the two reservoirs from where the major quantity of water is transferred to the 

Yedgaon reservoir.  The behaviour of the multiple reservoirs in the Kukadi Irrigation project 

is assessed using a simulation model based on SOP.  The statistical indices such as reliability, 

resilience and vulnerability are assessed.  It is found that the three upstream reservoirs have 



 

202 
 

satisfactorily succeeded in water transfer, except Manikdoh.  The performance indices show 

that the water transfer from Manikdoh is not as per the demand.  The time reliability index of 

Manikdoh shows that the water transfer is not timely.  This may be due to the less rainfall 

than expected in the catchment area of Manikdoh reservoir. 

The MOFLP model has resulted in a satisfaction level of 0.46 for the integrated operation of 

multi-reservoir system with an irrigation intensity of 102.18%.  The total net benefit obtained 

from the system is Rs. 1909.92 Million and total crop production of 1191.30 thousand tonnes.  

It is found that CMODE has resulted in higher net benefits of Rs. 1921.77 Million ($ 31.96 

Millions) and crop production of 1201.55 thousand tonnes.  This has been achieved with a 

crop area of 88678.46 ha during Kharif and 66562.98 ha during Rabi leading to an irrigation 

intensity of 106.29%.  The major contribution of net benefits is from the crops grown in 

Kharif due to the high crop area.   

The comparison of simulation of optimal crop area, irrigation releases and water transfer to 

Yedgaon reservoir resulted from both CMODE and MOFLP shows that both the techniques 

have performed equally better for most of the time period.  However, the MOFLP releases 

resulted in irrigation deficit for 7 months (7 years, one month in each year) where as the 

CMODE has only in 5 months (5 years) for KLBC.  The reliability of KLBC for CMODE 

releases is higher than MOFLP release.  For all other canals, both the techniques have resulted 

almost similar reliability levels.  The Yedgaon water transfer results shows that CMODE has 

resulted in less vulnerability compared to MOFLP model.  Thus, it may be concluded that 

CMODE has resulted better than MOFLP model and has achieved near global optimal 

solution. 

 



 
 

Chapter 7 

Single Objective Optimization of a Multi-Reservoir system 

7.1 General 

The water-sharing dispute in a multi-reservoir river basin forces the water resources planners 

to have an integrated operation of multi-reservoir system rather than considering them as a 

single reservoir system.  Unfortunately, many existing reservoir operational policies were 

derived as single reservoir system and fail to consider them as a multi-reservoir system in an 

integrated manner, especially in India.  Thus, optimizing the operation of a multi-reservoir 

system for an integrated operation is gaining importance and also need of the hour.  The 

integrated operation of a multi-purpose multi-reservoir system generally requires optimal 

release decisions and end of month storage levels to be maintained in each reservoir during 

the operating time period.  This can be determined by applying an optimization or simulation 

models or by both.  This chapter describes the development and application of simulation and 

optimization models for the integrated operation of a multi-reservoir system, with the 

objective of ‘maximizing the hydropower production’.  The KHEP in Maharashtra, India is 

taken up as a case study for the single objective optimization of a multi-reservoir system.  

Initially, a simulation model has been developed based on standard operating policy to study 

the response of the system for a given input.  Then, an optimization model is developed and 

optimized to maximize the hydropower production using soft computing techniques; the 

results are compared with conventional optimization technique.  The results obtained from 

models are presented and discussed in this chapter. 
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7.2 Development of Simulation Model 

A reservoir simulation model represents the hydrological behaviour of the system that are 

developed using the mass balance equation and other operating conditions (Rani and Moreira, 

2010).  A monthly time step rule based simulation model has been developed using the 

standard operating policy (SOP) to assess the power production from KHEP for various 

operating scenarios.  The rules in the SOP are (i) if the available storage (active storage + 

inflow - evaporation) in the reservoir is less than the demand, then whatever storage available 

in the reservoir is released; (ii) if the available storage is greater than the demand, then the 

demand is released.  Finally, the overflow is estimated if the end storage exceeds the capacity 

of the reservoir, else the overflow is zero.  Mathematically it is given as: 

If ASt < Dt, then Rt = ASt and Ot = 0      (5.1a) 

Else if Dt ≤ ASt  ≤ Smax, then Rt = Dt, Ot = 0 and St+1 = ASt - Rt   (5.1b) 

Else if Dt ≤ ASt > Smax, then Rt = Dt, Ot = ASt - Rt - Smax and St+1 = Smax (7.1c) 

where ASt is the storage available in reservoir during the time period ‘t’, Dt is demand during 

the time period ‘t’, Rt is the release during the time period ‘t’, Smax is the maximum storage of 

the reservoir, Ot is the overflow during the time period ‘t’ and St+1 is the initial storage of time 

period ‘t+1’.  Accordingly, the releases are made to ‘n’ powerhouses, if enough storage is 

available in the reservoir.   

The power production (Pn,t) (kWh) from a powerhouse ‘n’ during the time period ‘t’ is 

estimated using the equation (Loucks et al., 1981): 

 tntntn HRkP ,,,   t = 1, 2, …12; n = 1,2,3,4  (7.2) 

where k  is the conversion constant,  Rn,t is the release to the powerhouse ‘n’ during the time 

period ‘t’ (106 m3); Hn,t is the net head available in the reservoir for the powerhouse ‘n’ during 

the time period ‘t’ (m) and η is the efficiency of the power plant.  The net head is estimated 

after deducting the tail water level and other frictional losses.   
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The final storage of the reservoir is estimated by deducting all the releases and losses using 

the mass balance equation.  The mass balance equation is given as: 

m,t
n

n,tm,tm,tm,T ERISS     t = 1, 2, …12; m = 1,2  (7.3) 

where Sm,T is the final storage in the reservoir ‘m’ during the time period ‘t’;  Sm,t is the initial 

storage in the reservoir ‘m’ during the time period ‘t’; Im,t is the inflow into the reservoir ‘m’ 

during the time period ‘t’; Rn,t is the release to the powerhouse ‘n’ during the time period ‘t’; 

Em,t is the evaporation loss in the reservoir ‘m’ during the time period ‘t’.  Koyna reservoir is 

having three powerhouses and hence there are three releases (n = 3).  Kolkewadi reservoir is 

having only one powerhouse and hence only one release (n = 1).  Also the tail water of 

Western side powerhouses (PH I and PH III) of Koyna reservoir will be additional inflow to 

Kolkewadi reservoir apart from the inflow from its own catchment.  Overflow occurs when 

the final storage exceeds the reservoir capacity.  Thus, the surplus is estimated using the 

equation: 

max,,, mTmtm SSO      t = 1, 2, …, 12; m = 1, 2 (7.4) 

where Sm,max is the maximum storage (capacity) of the reservoir ‘m’ (106 m3) and Om,t is the 

overflow in the reservoir ‘m’ during the time period ‘t’.  Else, the overflow is zero.  Then, the 

final storage is re-estimated incorporating the overflow.  This final storage will be the initial 

storage for the next time period ‘t+1’.  If the reservoir storage reaches the minimum (dead) 

storage, then the release to the powerhouse ‘n’ is zero.   

In addition to these general constraints, the constraint on releases to the powerhouses on the 

Western side is also considered to study the system under present situation.  This constraint 

restricts the diversion of large quantity of water towards Western side for power production 

from Koyna reservoir and is given as:  

max

12

1

2

1
, RR

t n
tn  

 
        (7.5) 
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where, Rmax is the maximum water that can be diverted to the Western side for power 

production from the Koyna reservoir.  Also, each powerhouse have specific minimum draw 

down level (MDDL), below which it cannot be operated.  This constraint infers that the head 

available in the reservoir should be always greater than MDDL of the powerhouse ‘n’ during 

any time period ‘t’ to produce power.  Mathematically this constraint is given as: 

n,tn,t MDDLH     t = 1, 2 …12; n =1, …, 4  (7.6) 

where Hn,t is the average head (m) in the reservoir for the powerhouse ‘n’ during the time 

period ‘t’ and MDDLn,t is the minimum drawdown level for the powerhouse ‘n’ during the 

time period ‘t’. 

The above developed simulation model has been used to assess the behaviour of KHEP for 

different operating scenarios based on release constraint and for various powerhouse 

operating durations.  The behaviour of the system for various scenarios in long run is assessed 

using the statistical performance indices such as reliability, resilience and vulnerability.  The 

results of the simulation model and the behaviour of the system from the statistical indices are 

discussed in the following section. 

7.3 Results of Simulation Model 

Usually, hydropower releases are termed as non-consumptive, since the water can be used for 

some other purpose after power generation, mostly for irrigation.  However in this case study, 

the releases to major powerhouses and irrigation are in the opposite direction which makes the 

operation of the system very complex.  The diversion of huge quantity of water for power 

production towards the Western side is restricted by KWDT (2010), due to which the power 

production has decreased significantly.  Hence, two scenarios are analysed, (a) power 

production without tribunal constraint on releases (unconstrained scenario) (i.e. all physical 

constraints are considered without constraint on releases) and (b) power production with 

tribunal constraint on releases (constrained scenario) to powerhouses PH I and PH III on the 

Western side (i.e. hard binding constraints on releases are also considered along with all 

physical constraints).  Thus, the unconstrained scenario will assess the full power production 
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potential of the KHEP system for the given input and the constrained scenario will give the 

power production under restricted releases with SOP.   

In KHEP, all the powerhouses are peak stations, except PH IV and are operated only few 

hours in a day and do not have any specific demand.  The PH IV is operated only through 

irrigation releases.  Based on this, three cases of simulation have been analyzed.  In case 1, it 

is considered that the power is produced for 4 hours in a day (4 hr), in case 2, the power 

production is for 6 hours in a day (6 hr) and in case 3, the power is produced for 8 hours in a 

day (8 hr).  The monthly water demand for these cases are estimated based on the maximum 

turbine discharge capacity, number of hours of operation in a day and number of days in a 

month.  The KHEP operations are then simulated using 11 years of observed inflow data from 

1999 – 2010 using the developed simulation model.  The release to powerhouse PH III is 

given first priority, since the MDDL for PH III is higher than other powerhouses and also it is 

the major powerhouse with high capacity in the system.  Then the second priority is given to 

PH I and third to PH IV.  The results of the simulation model are discussed in the following 

section. 

7.3.1 Power Production 

The annual power production resulted from the simulation model for different duration of 

operation for constrained and unconstrained scenarios is given in Figure 7.1.  In general, it is 

observed that the annual power production in unconstrained scenario is higher than the 

constrained scenario for all the three cases (duration of operation) considered.  It is worth 

mentioning that constrained/ unconstrained refers only to the constraints on releases.  In both 

the scenarios, the systems physical constraints remain the same.  The high power production 

in case of unconstrained scenario is due to the unrestricted releases to the powerhouses on the 

Western side of Koyna reservoir.  The variation in annual power production is less for case 1 

over the years, which shows the power production is highly stable and reliable for this 4 hr 

duration of operation.  However, there is a large variation in annual power production over the 

years for case 2 (6 hr) and case 3 (8 hr) in the unconstrained scenario.  If the powerhouses are 

operated 4 hours per day, the left over storage will be carried over to subsequent years and 

hence there is a constant power production in all the years in case 1.  It is also found that the 

power production largely depends on the corresponding year inflow for longer duration of 
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operation, since the carryover storage will be very less.  Hence, there is high variation in 

annual power production for different years in unconstrained scenario.   

The power production under constrained scenario for different cases is shown in Figure 

7.1(b).  It is observed that the annual power production is almost equal irrespective of 

duration of operation, since the total annual releases for different cases are same.  This has led 

to a small variation in annual power production in all the years for different duration of 

operation.  Thus, in the constrained scenario, the powerhouses can produce only restricted 

power and almost equal irrespective of duration of operation.  However, the monthly power 

production varies largely.  From the figure, it is also observed that the constraint on the 

releases has drastically reduced the power production.  The total annual releases in the 

unconstrained scenario are 12%, 36% and 47% higher than the constrained scenario for case 

1, 2 and 3, respectively.  On an average, this has increased the annual power production by 

12%, 30% and 35% for case 1, 2 and 3, respectively in the unconstrained scenario.  The study 

shows that the 4 hr operation without imposing the constraints on releases can produce 12% 

more power than constrained scenario every year and also satisfies the irrigation demands. 

 

Figure 7.1. Comparison of annual power production resulted from the model (a) 

unconstrained and (b) constrained scenarios 
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The monthly power production resulted from simulation model for different cases of 

unconstrained and constrained scenario is given in Figure 7.2.  From the figure, it is found 

that there is large variation in monthly power production for different duration of operations 

for both unconstrained and constrained scenario.  The case 3 (8 hr duration of operation) 

resulted in more power production than case 1 and 2 for both unconstrained and constrained 

scenarios, but produces power only in few months of a year.  The model reaches the 

maximum allowable limit of water diversion within few months and hence there is no 

continuous power production in the constrained scenario.  Thus, 8 hr duration may not be 

viable option for power production, since peak demands need to be met throughout the year.  

The case 1 and 2 of unconstrained scenario has resulted power production in most of the 

months in a year compared to constrained scenario.  The power production also varies among 

the months for same duration of operation due to variation in storage levels and available net 

head.  Thus, it may be concluded the 4 hr to 6 hr operation is a viable period of power 

production that may satisfy the hard bound constraints on releases as well as irrigation 

requirements. 

 

7.3.2 Monthly Releases 

The monthly release to the powerhouses for case 1 (4 hr operation) is given in Figure 7.3.  

From the figure, it is observed that the unconstrained scenario has resulted in continuous 

releases to all the powerhouses for all the months of simulation period except in one month 

(May, water year 2003 – 2004).  This is due to very less inflow in to the reservoir during that 

particular year as it was a severe drought year.  The constrained scenario also has released 

most of the months in a year but failed to release at the end of the season in every year to the 

powerhouses PH I and PH III, since the total releases has reached the maximum allowable 

limit.  Thus, the simulation results indicate that all the powerhouses can be operated only 

around 4 hr a day under the constrained scenario.  The releases to PH II are similar to PH I 

and PH III, since the operations of PH II is based on PH I and PH III releases.  It is also 

observed that the constrained scenario has resulted in irrigation releases as per the irrigation 

demand in all the months of the simulation period.  The unconstrained scenario failed in only 

one month to release for irrigation due to less inflow in that year, particularly at the end of the 

season. 
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Figure 7.2. Monthly power production for different duration of operation (a) unconstrained scenario and (b) constrained scenario
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Figure 7.3. Monthly releases for 4 hours of operation of various powerhouses for the 

unconstrained and constrained scenarios 

 

The monthly release to the powerhouses for unconstrained and constrained scenarios for case 

2 (6 hr operation) is given in Figure 7.4.  The release for case 2 is higher, since the duration of 

operation of power plants has increased.  In case 2, both the unconstrained and constrained 

scenarios have released only during the start of the season in every year.  However, the 

unconstrained scenario has resulted release in most of the months compared to the constrained 

scenario and failed in few months where inflow is very less during that particular year.  In 

spite of having high storage in the reservoir, there are no releases in the constrained scenario 

at the end of the season for every year due to the restriction on releases.  But, this has ensured 

the irrigation releases for all months of the simulation period in the constrained scenario.  The 

unconstrained scenario failed in irrigation release for few months due to less inflow and also 

due to diversion of large quantity of water for power production.  The case 3 (8 hr duration of 

operation) has also resulted similar to case 2 (6 hr duration of operation) for all powerhouses 

and is given in Figure 7.5.  Thus, it may be concluded that the case 1 (4 hr duration of 

operation) of unconstrained scenario is viable for KHEP, since it has resulted constant and 

continuous power production as well as satisfied the irrigation demands in all months. 
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Figure 7.4. Monthly releases for 6 hours of operation of various powerhouses for the 

unconstrained and constrained scenarios 

 

 

Figure 7.5. Monthly releases for 8 hours of operation of various powerhouses for the 

unconstrained and constrained scenarios 
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7.3.3 End of Month Storage Levels 

The resulted end of month storage levels of Koyna reservoir from the simulation model for 

the unconstrained and constrained scenarios is given in Figure 7.6.  From the figure, it is 

found that there is large variation in storage levels for different cases.  It is observed that the 

unconstrained scenario has resulted in lesser storage levels than the constrained scenario due 

to unrestricted releases leading to complete utilization of available water.  Thus, it can be 

concluded that the unconstrained scenario has fully utilized the available storage in the 

reservoir for power production.  Figure 7.6(a) shows the end of month storage levels for case 

1 (4 hr operation).  There is no much variation in storage levels for most of the months in 

constrained and unconstrained scenarios.  Both the scenarios have resulted in large storage for 

most of the time period due to less duration of operation and also resulted in overflow for few 

months.  Figure 7.6(b) and Figure 7.6(c) shows the end of month storage levels for case 2 (6 

hr operation) and case 3 (8 hr operation), respectively.  Though both the figures looks similar, 

the storage level varies over the time period.  It is observed that the storage depleted rapidly 

for case 3 (8 hr operation) due to high demand compared to case 2 (6 hr operation).  For both 

these cases, the constrained scenario has high storage and overflow due to the restriction in 

releases.  The total releases to the powerhouses on Western side reached their allowable limits 

within few months and hence the releases are zero at the end of the season every year.  In the 

unconstrained scenario, both these cases fully utilized the available storage in the reservoir for 

power production and hence resulted in dead storage at the end of the season.  However, the 

unconstrained scenario has also resulted in overflow in few months, due to exceptionally high 

inflow.  All the models have resulted in similar storage levels for constrained scenario for the 

Kolkewadi reservoir.  From these simulated results and figures, it may be concluded that for 

the integrated operation of KHEP, case 1 (4 hr daily power production) is a most viable 

option. 

7.3.4 Reliability 

The time reliability shows how far the system has satisfied the demand during the total 

simulation period.  The volume reliability shows to what extent the demands are satisfied in 

terms of quantity.  The reliability index close to one indicates the system is highly reliable and 

vice versa.   
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Figure 7.6. Resulted end of month storage levels of Koyna reservoir for the 

unconstrained and constrained scenarios 

 
 

The reliability of various powerhouses and KHEP system is estimated for both the 

unconstrained and constrained scenarios based on time as well as volume and are depicted in 

Table 7.1.  It is noted that the reliability is high for case 1 (4 hr duration of operation) for 

unconstrained scenario than the constrained scenario, since the demands are met in most of 

the time period in unconstrained scenario.  It can also be seen that the reliability of the KHEP 

system is higher for the unconstrained scenario than the constrained scenario.  The lesser 

reliability of constrained scenario is due to that the total releases to the Western side 

powerhouses have reached the maximum allowable limit within few months and hence there 

are no releases in the later part of the year.  However, PH IV has resulted in a higher 

reliability for the constrained scenario, since the irrigation demands are satisfied throughout 

the simulation period in constrained scenario.  The volume reliabilities are slightly higher than 

the time reliability in both the scenarios.  This is due to that the time reliability considers the 

releases less than the demand as failure during that time period however; the volume 

reliability accounts releases during that failure time period also.  From the reliability point of 
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view also, it may be concluded that case 1 (4 hr operation) has ensured the irrigation supply 

with high reliability in both constrained and unconstrained scenario and can be one of the 

viable operation time period. 

 

Table 7.1. Resulted time and volume reliability for unconstrained and constrained 

scenarios 

Cases 
Unconstrained Scenario Constrained Scenario 

PH I PH II PH III PH IV KHEP PH I PH II PH III PH IV KHEP 
Time Reliability 
Case 1 0.99 0.99 0.99 0.98 0.98 0.83 0.83 0.83 1.00 0.83 
Case 2 0.83 0.85 0.86 0.80 0.80 0.50 0.58 0.58 1.00 0.50 
Case 3 0.64 0.68 0.69 0.63 0.63 0.42 0.42 0.42 1.00 0.42 
Volume Reliability 
Case 1 0.99 0.99 0.99 0.98 0.99 0.83 0.87 0.87 1.00 0.89 
Case 2 0.84 0.88 0.89 0.75 0.86 0.55 0.59 0.59 1.00 0.63 
Case 3 0.67 0.75 0.76 0.53 0.72 0.42 0.44 0.44 1.00 0.49 

 
 

7.3.5 Resilience 

Resilience is the measure of how fast a system is likely to return to a satisfactory state from an 

unsatisfactory state.  A resilience index close to one indicates the system will quickly recover 

from failure state and vice versa.  The mean and maximum resilience for the powerhouses and 

the system for the unconstrained and constrained scenario are given in Table 7.2.  The 

resilience index of unconstrained scenario is higher than the constrained scenario for all the 

powerhouses and KHEP system.  From the table, it is observed that both the mean and 

maximum resilience decreases with the increase in duration of operation.  Both the mean and 

maximum resilience are same for case 1 (4 hr duration of operation) in the unconstrained and 

constrained scenarios.  This shows that constraints on releases have no effect for short 

duration of operation of powerhouses.  However, there is wide variation in mean resilience 

among powerhouses for longer duration of operation.  The constraint scenario has satisfied 

the irrigation demands during all the simulation periods.  Hence, there are no failure events 

for PH IV for all the cases and hence the resilience is zero.  
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Table 7.2. Resulted mean and maximum resilience for the unconstrained and 

constrained scenarios 

 Case 
Unconstrained Scenario Constrained Scenario 

PH I PH II PH III PH IV KHEP PH I PH II PH III PH IV KHEP 
Mean Resilience 
Case 1 1.00 1.00 1.00 0.50 0.50 0.50 0.50 0.50 0.00 0.50 
Case 2 0.30 0.30 0.33 0.33 0.33 0.17 0.20 0.20 0.00 0.17 
Case 3 0.23 0.26 0.27 0.22 0.22 0.14 0.14 0.14 0.00 0.14 
Maximum Resilience 
Case 1 1.00 1.00 1.00 0.50 0.50 0.50 0.50 0.50 0.00 0.50 
Case 2 0.20 0.20 0.25 0.20 0.20 0.17 0.20 0.20 0.00 0.17 
Case 3 0.14 0.17 0.17 0.14 0.14 0.14 0.14 0.14 0.00 0.14 

7.3.6 Vulnerability 

Vulnerability is the measure of the likely damage of a failure event.  The mean and maximum 

vulnerability of the powerhouses and the KHEP system under unconstrained and constrained 

scenarios is given in Table 7.3.  From the table, it is observed that both the mean and 

maximum vulnerability increases with increase in the duration of operation.  The mean and 

maximum vulnerability of the powerhouses and the system varies significantly for long 

duration of operation in the unconstrained scenario.  However, it remains almost equal in the 

constrained scenarios.  Also, the vulnerability of the powerhouses and the KHEP system is 

higher for longer duration of operation in constrained scenario than the unconstrained 

scenario, since restricting the releases leads to higher deficits in the Western side 

powerhouses.  Thus, these performance indices such as reliability, resilience and vulnerability 

confirm that KHEP can be operated up to 4 hr without restricting the releases. 

Table 7.3. Resulted mean and maximum vulnerability (106 m3) for the unconstrained 

and constrained scenario 

Case 
Unconstrained Scenario Constrained Scenario 

PH I PH II PH III PH IV KHEP PH I PH II PH III PH IV KHEP 
Mean Vulnerability 
Case 1 73.21 106.73 90.81 184.95 455.70 144.06 213.83 172.46 0.00 530.35
Case 2 322.47 535.65 423.55 255.75 1146.03 582.78 1030.22 848.03 0.00 2461.03
Case 3 571.57 834.66 650.16 394.86 2451.24 1001.33 1894.30 1543.79 0.00 4439.42
Maximum Vulnerability 
Case 1 73.21 106.73 90.81 184.95 455.70 144.06 214.48 172.46 0.00 531.00
Case 2 501.54 747.39 604.20 469.52 2258.51 582.78 1031.74 848.03 0.00 2462.55
Case 3 925.41 1486.94 1186.60 599.52 4084.41 1001.33 1895.69 1543.79 0.00 4440.81
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7.4 Development of Optimization Model for Hydropower 
Production 

Hydropower is one of the potential sources for meeting the growing energy needs of the 

country.  India is endowed with rich hydropower potential and it ranks fifth in the world in 

terms of usable potential.  The total installed capacity in India as on 31 December 2010 was 

171,644 MW among which hydropower constitutes 40,320 MW including both small and 

large hydropower plants (Sukhatme, 2011).  However, Sukhatme (2011) reported that India 

needs to produce four times of the present generation to cope up the future energy demand.  In 

India, most of the reservoirs have hydropower plants.  However, many of them are not 

operated to their full potential.  Some of the reasons highlighted by Arunkumar and 

Jothiprakash (2012) were (i) in most of the plants, hydropower is produced through irrigation 

release, hence there will be power production only when there is irrigation release; (ii) 

hydropower and irrigation releases are conflicting objectives and (iii) disputes in sharing 

available water among different stakeholders. This calls for an efficient and effective 

operation of reservoirs for crop and power production, considering long-term sustainability, 

environmental aspects, and social concerns.  In the present study, the hydropower production 

from KHEP is optimized considering all the reservoirs in the project as a multi-reservoir 

system and the results are discussed. 

The objective of the present study is to maximize the hydropower production from all the 

powerhouses of the two reservoirs.  It is expressed as: 

Maximize  )tIVPHIIIPHIIPHI(PHZ
12

1t
ttt  



   (7.7) 

where, PH It, PH IIt, PH IIIt and PH IVt is the power production from PH I, PH II, PH III, and 

PH IV respectively during the time period ‘t’ in terms of kWh.  According to Loucks et al. 

(1981), the hydropower production during any time period ‘t’ is dependent on the plant 

capacity, flow through the turbines, average effective storage head, number of hours operation 

and a constant for converting the product of flow, head and plant efficiency to electrical 

energy.  Thus, the hydropower production (PHn,t) in terms of kilowatt-hours (kWh) during 

any time period ‘t’ is expressed as  
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ntntntn HNRKPH  ,,,   t = 1,2,..12; n = 1,2,3,4  (7.8) 

where, K is the constant to convert the hydropower to kWh, Rn,t is the release to the 

powerhouse ‘n’ during the time period ‘t’, HNn,t is the net head (m) during the time period ‘t’, 

and ηn is the nth power plant efficiency.  The average head (Hn,t) available for the powerhouse 

‘n’ during a particular time period ‘t’ is expressed as the second order function of the storage 

and is given as:   

ntnntnntn CSCSCH ,3
2
,,2,,1,    t = 1,2,..12; n = 1,2,3,4  (7.9) 

The net head (HNn,t) is estimated by deducting the tail water level and the frictional losses 

from the average head available in reservoir during the time period ‘t’ from Eq. 5.9.  

The above objective function (Eq. 5.7) is subjected to various physical constraints.  The head 

available in the reservoir should be greater than the minimum drawdown level (MDDL) of the 

powerhouse during any time period ‘t’.  This is expressed as 

n,tn,t MDDLH     t = 1, 2 …12; n =1, 2, 3, 4  (7.10) 

where Hn,t is the average head (m) in the reservoir for the powerhouse ‘n’ during the time 

period ‘t’ and MDDLn,t is the minimum drawdown level of the powerhouse ‘n’ during the 

time period ‘t’.  The power production in a power plant ‘n’ during any time period ‘t’ should 

be less than or equal to the maximum power generating capacity of the plant  

n,tn,t PPH max    t = 1, 2 …12; n =1, 2, 3, 4  (7.11) 

where PHn,t is the power produced (kWh) from the powerhouse ‘n’ during the time period ‘t’; 

Pmaxn,t is the maximum generation capacity (kWh) of the powerhouse ‘n’ during the time 

period ‘t’.  Even though Koyna is one of the largest reservoir in the state of Maharashtra, 

India, due to its intended purpose more emphasis is being given to hydropower after meeting 

the irrigation demand.  Hence, in the present study, irrigation demand is taken as a constraint 

and is made as a compulsory release.  This constraint is given as the monthly irrigation release 

and should be greater than or equal to the monthly irrigation demand during the time period 

‘t’ and is mathematically expressed as: 
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t,t IDR 4       t = 1, 2…12  (7.12) 

where R4,t is the irrigation release from Koyna Dam during the time period ‘t’ and IDt is the 

irrigation demand during the time period ‘t’. 

To ensure adequate water for irrigation on Eastern side and other downstream requirements, 

the diversion of large quantity of water towards Western side was limited by Krishna Water 

Dispute Tribunal (KWDT, 2010).  As per this constraint, diversion of large quantity of water 

to Western side for power production was restricted to 1912 × 106 m3.  The total annual 

release for irrigation should be 850 × 106 m3.  These constraints are given as: 

max

12

1
31 w,

t
,t,t R)R(R  


        (7.13) 

max

12

1
4 AIDR

t
,t 


        (7.14) 

where, Rw,max is the maximum water that can be diverted to the Western side for power 

production and AIDmax is the maximum water to be released annually for irrigation to the 

Eastern side.  

The storage ‘Sm,t’ in reservoir ‘m’ during any time period ‘t’ should not be less than the 

minimum storage (Sm,min) or dead storage and should not be more than maximum storage 

(Sm,max) or capacity of the reservoir.  It is also essential to maintain the reservoir storage at 

some lower level during the monsoon season to observe the flood and to avoid flooding at the 

downstream.  This is given by (Simonovic and Srinivasan, 1993):   

)( ,maxmin tmm,m,tm, SSS     t = 1, 2 …12, m = 1, 2  (7.15) 

where θm,t is the required storage to be emptied for flood during the monsoon season for the 

reservoir ‘m’ during the time period ‘t’.  The required flood storage (θm,t) for different time 

period ‘t’ during the monsoon season are fixed as per downstream canal carrying capacity and 

time required for operating the gates of the reservoirs (KHEP, 2005). 
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The evaporation loss (Em,t) from the reservoir ‘m’ during the period ‘t’ is expressed as a 

function of initial and final storage (Arunkumar and Jothiprakash, 2012) during that particular 

time period.  This is expressed as:  








 
 

2
1,,

,,,
)(tmtm

tmtmtm

SS
baE     t = 1, 2 … 12 ; m = 1, 2  (7.16) 

where, am,t is the constant estimated by regression analysis when evaporation is plotted 

against the average storage during the time period ‘t’ and bm,t is the slope when evaporation is 

plotted against the average storage of the reservoir during the time period ‘t’ for the reservoir 

‘m’.   

The continuity equation for Koyna reservoir is given as:  

 




431

1
111111

,,

n
,t,tn,t,t,t),(t EORISS  t = 1, 2 …12, n = 1, 3 & 4 (7.17) 

where, S1,(t+1) is the final storage in the Koyna reservoir during the time period ‘t’ (106 m3); 

S1,t is the initial storage in the Koyna reservoir during the time period ‘t’ (106 m3); I1,t is the 

inflow into the Koyna reservoir during the time period ‘t’(106 m3); Rn,t is the release to the 

powerhouse ‘n’ during the time period ‘t’ (106 m3) from the Koyna reservoir; O1,t is the 

overflow from the Koyna reservoir during the time period ‘t’(106 m3) and E1,t is the 

evaporation losses from the Koyna reservoir during the time period ‘t’, (106 m3).    

The continuity equation for the Kolkewadi reservoir is given as follows: 

,t,t,t,t,t,t,t),(t EORRRISS 222312212    t = 1, 2 …12 (7.18) 

where, S2,(t+1) is the final storage in the Kolkewadi reservoir during the time period ‘t’; S2,t is 

the initial storage during the time period ‘t’ in Kolkewadi reservoir; I2,t is the inflow into the 

Kolkewadi reservoir from its own catchment area during the time period ‘t’; R2,t is the release 

to the PH II from the Kolkewadi reservoir during the time period ‘t’; R1,t is the inflow to the 

Kolkewadi reservoir from PH I during the time period ‘t’; R3,t is the inflow to the Kolkewadi 

reservoir from PH III during the time period ‘t’; O2,t is the overflow from the Kolkewadi 
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reservoir during the time period ‘t’; E2,t is the evaporation losses from the Kolkewadi 

reservoir during the time period ‘t’. 

The overflow occurs when the final storage exceeds the reservoir capacity.  This overflow 

constraint is given by: 

max1 m,)m,(tm,t SSO      t = 1, 2 … 12; m =1, 2   (7.19) 

and  0m,tO    t = 1, 2 … 12; m = 1, 2  (7.20) 

where, Sm,(t+1) is the final storage in the reservoir ‘m’ during time period ‘t’ (106 m3) and this 

final storage is the initial storage for the next time period ‘t+1’, when there is no overflow.  If 

overflow occurs then Sm,max will be the initial storage for the next time period ‘t+1’. 

7.5 Optimization of Multi-reservoir System 

The KHEP is optimized for maximizing the hydropower production using the above 

developed monthly time step model considering both the Koyna and Kolkewadi reservoirs as 

multi-reservoir system.  Based on the tribunal constraints (Eq. 5.13 and Eq. 5.14) of the above 

formulated model, four operating policies (Arunkumar and Jothiprakash, 2012) are analyzed.  

These different operating policies will be helpful in assessing the full potential of the KHEP 

system for power production under different release conditions.  The policies considered in 

the present study are: 

Policy 1: No binding constraint on Eastern and Western side releases (all the constraints 

are considered except constraint Eq.  5.12, 5.13 and 5.14) [Aim: To find the 

full power production potential of the system] 

Policy 2: Only annual binding constraint on irrigation (Eastern side) releases (all the 

constraints are considered except constraint Eq. 5.12 and 5.13) 

Policy 3: Both monthly and annual binding constraint on irrigation (Eastern side) 

releases (all the constraints are considered except constraint Eq. 5.13) 

Policy 4: Both Western and Eastern side binding constraints on releases are considered 

as per the Tribunal (with all the hard bound constraints) 
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The Koyna reservoir receives 95% of the inflow during the monsoon season (Jun - Oct) and 

the remaining 5% during the non-monsoon period (Nov - May).  This shows that this 

intermittent inflow Koyna reservoir completely depends on the monsoon inflow.  The major 

inflow into Kolkewadi reservoir is the power releases from Koyna reservoir through PH I and 

PH III.  Thus, the operation of PH III at Kolkewadi reservoir completely depends on Koyna 

releases to PH I and PH III.  The average head available in the reservoir is represented as a 

quadratic function of storage and is given in Eq. 5.9.  The constants of the equation, C1, C2 

and C3 are estimated by regression analysis from area-capacity-elevation table of the 

reservoirs.  The developed optimization model has 48 decision variables and 264 constraints.  

Initially, the above optimization model has been solved using a conventional NLP technique.  

Then, the optimization model is solved using soft computing techniques coupled with chaos.  

In addition, the optimal releases of the selected policy are further tested using a simulation 

model for 49 years of observed inflow.   

7.6 Optimization using Conventional NLP Technique 

The NLP model is optimized for three different inflows scenarios, namely, scenario 1: wet 

scenario (50% dependable inflow), scenario 2: normal scenario (75% dependable inflow) and 

scenario 3: dry scenario (90% dependable inflow).  The dependable inflows are estimated 

using Weibull’s method (Chow et al., 1988) from 49 years of observed inflow.  The NLP 

optimization model is solved using global solver in Language for Interactive General 

Optimization (LINGO) Software.  The global solver combines a series of range bounding 

(e.g. interval analysis and convex analysis) and range reduction techniques (e.g. linear 

programming and constraint propagation) within a branch and bound framework to find 

global solutions to non-convex non-linear programs (Lingo, 2006).  The optimal releases of 

the developed NLP model for the above four policies under different dependable inflow 

scenarios are discussed in the following section. 

7.6.1 Annual Power Production 

In order to assess the full power production potential of the KHEP as well as under restricted 

releases, the formulated NLP model is solved for the above mentioned four policies using 

three different dependable inflow scenarios.  The variation of annual power production for 
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different operating policies resulted from three inflow scenarios is given in Figure 7.7.  It can 

be observed from Figure 7.7 that the power production decreases among the policy with 

increase in restriction on releases as well as with increase in inflow dependability.  However, 

in case of dry inflow scenario, the annual power production is almost same for Policies 2, 3 & 

4.  This shows that the power production potential under dry inflow scenario remains the 

same irrespective of restriction on Western side releases.  Among all these policies, the Policy 

1 has resulted in a maximum power production of 5826.29 × 106 kWh for wet inflow 

scenario, since there is no restriction on the Western and Eastern side releases.  Even though 

this Policy 1 has resulted in maximum power production through major power plants on the 

Western side, the releases towards Eastern side for irrigation are lower and most of the 

months are zero for all the inflow scenarios.  This shows that with no hard bound constraints, 

the model reduced the irrigation release on the Eastern side to achieve full power production 

in the Western side power plants.  Depriving irrigation release is not a viable case in practical, 

since irrigation is the primary occupation on the Eastern side of the reservoir and hence 

irrigation releases are mandatory.  Thus, Policy 1 cannot be a practically implementable 

policy.  But, Policy 1 shows the full power production potential of the KHEP system under 

unrestricted releases.   

In order to achieve irrigation releases, the annual irrigation release constraint is considered in 

Policy 2.  Under this Policy 2, all the three inflow scenarios have resulted in irrigation 

releases equal to the annual demand, but not in every month.  Considering this constraint in 

the optimization model reduces the power production substantially for all the three inflow 

scenarios showing that hydropower production and irrigation are conflicting objectives.  The 

reduction in total power production for different inflow scenarios varies between 10 – 29% 

compared to Policy 1.  The hydropower plants in the Western side are having high net head 

with high generating capacity and hence produce more hydropower for same discharge 

compared to PH IV at the dam foot on the Eastern side.  Thus, the power produced from PH 

IV through irrigation releases is lesser than the power produced at PH I & III for the same 

discharge.  Even though this Policy 2 has satisfied the total annual irrigation demand, the 

month wise irrigation demands are not met.   

In order to have irrigation release for all months, both the annual and monthly irrigation 

demand constraints are considered in Policy 3.  The optimization model solved with Policy 3 

has resulted in irrigation release in all the months as per the monthly demand and the power 
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production is almost similar to that of Policy 2 for all the scenarios.  This Policy 3 is a 

practically implementable optimal solution, leading to higher power production satisfying all 

the physical and other demand constraints.  In all these policies, the restriction on releases 

towards the Western side for power production is not considered for all the inflow scenarios 

and hence the releases are slightly more than the tribunal limit.  

 

 

Figure 7.7. Annual power produced from various scenarios under different inflow 

condition using NLP technique 

 

In Policy 4, all the binding constraints on releases are considered and thus, the model has 

restricted the releases for both power production and irrigation as per the tribunal limits.  The 

limitation on releases has reduced the power production significantly for all inflow scenarios 

compared to other policies.  Also, there is not much variation in the power production among 

the different inflow scenarios in this Policy 4, since the total quantity of release for power 

production is same.  This shows that under restricted releases, the power production is same 

irrespective of the quantity of inflow received by the reservoir.  When compared to Policy 1, 

the power production decreases by 44% for wet scenario, 38% for normal and 29% for dry 
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scenario in Policy 4.  Also, there is a decrease of around 32% and 18% in power production 

when compared to Policy 3 for wet and normal scenarios, respectively.  In Policy 4, the dry 

inflow scenario has produced almost the same hydropower as that of Policy 3.  This shows 

that under dry (less) inflow scenario, the system produces almost same hydropower 

irrespective of tribunal release constraints and thus leading to redundancy of this constraint at 

low inflow scenario.  On the other hand, Policy 4 increased the storage in the reservoir 

leading to overflow from the reservoir during normal and wet years.  Based on the annual 

power production and satisfying various demands it may be concluded that Policy 3 is the best 

viable and implementable policy and is a best alternative to Policy 4. 

 

7.6.2 Monthly Power Production 

The monthly power production resulted from the NLP model for various policies are 

discussed scenario wise.  First, the policies for wet scenario are discussed followed by normal 

scenario and dry scenario.  A maximum of 614.74 × 106 kWh was produced in August for 

both Policy 1 and 2, and minimum of 98.24 × 106 kWh was produced in June for Policy 4 

from the system for the wet inflow scenario.  A maximum firm energy of 417.14 × 106 kWh 

was produced from Policy 1 and decreases with restriction on releases.  Among the 

hydropower plants, PH III has produced maximum of 300 × 106 kWh for all policies because 

of high head and capacity.  It is also to be observed that PH IV has produced power only in 

July and August.  It can be inferred that there is no irrigation release during most of the 

months in Policy 1, since no binding constraints on releases are considered.  In Policy 2, PH 

IV has produced power only during the monsoon season, which shows that irrigation releases 

are made only during the monsoon season.  However, the total releases are equal to the annual 

irrigation demand.  There is power production in PH IV in all months in Policy 3.  This has 

lead to the satisfaction of monthly irrigation demand and annual irrigation demand.  There is a 

wide variation in power production among the hydropower plants in Policy 4.  All these 

variations are due to the constraint imposed on Western side releases.  This wet scenario 

shows that Policy 3 has produced maximum power satisfying all the physical constraints 

including meeting the irrigation demands.  Thus, Policy 3 may be considered as the better 

policy. 
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During normal inflow scenario, only the Policy 1 has resulted in considerable power 

production in all the months expect PH IV.  Both the Policy 2 and 3 has shown a similar trend 

in power production with less variation in each month.  A maximum of 477.76 × 106 kWh 

was produced in October for Policy 2, and minimum of 90.22 × 106 kWh was produced in 

June for Policy 2 from the system for the normal inflow scenario.  The maximum firm energy 

of 356.33 × 106 kWh is produced from the system for Policy 1.  Among the hydropower 

plants, PH III has produced maximum firm energy in Policy 1 because of high head and 

capacity.  In Policy 2, not only the total power production but also the firm energy has 

decreased compared to Policy 1, since the annual irrigation release constraint is considered.  

These results show that Policy 3 is best policy for 75% dependable inflow scenario also. 

Contrary to other inflow scenarios, the variation in monthly minimum power production from 

the system is very less among different policies under dry inflow scenario.  This shows that 

under less inflow scenario, the restriction on releases has less impact on power production.  It 

is observed that the Policies 2, 3 and 4 have resulted in a similar trend in monthly power 

production.  These three policies have produced power only during the monsoon season, 

where there will be inflow and during non-monsoon season the power production remains 

constant.  This shows that under dry inflow scenario, the system behaves the same way 

irrespective of constraints on releases.  Thus, Policy 3 and Policy 4 are producing almost same 

results under dry inflow scenario. 

In general, the wet inflow has resulted in more hydropower production than the normal and 

dry inflow scenario for all the policies studied.  It is observed that PH III has produced 

maximum hydropower for all the policies and scenarios.  It is also observed that the 

hydropower production in PH III has reduced considerably compared to the other hydropower 

plants due to constraints on releases.  Since, Kolkewadi reservoir receives inflow mainly from 

PH I and PH III, the power production from PH II varies accordingly.  The variation in power 

production among the wet, normal and dry inflow scenario is less for Policy 4 compared to 

other policies.  The Policy 1 showed the full potential of the KHEP power production 

capability.  The Policy 4 shows the power production under the hard bound constraints.  It is 

found that the constraint on Eastern side and Western side releases reduced the power 

production from the system.  But Policy 3 seems to be a much viable policy, since it obeys all 

the constraints but in different way, it is better to have Policy 3 rather than Policy 4. 
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7.6.3 Monthly Releases 

The monthly releases to the powerhouses resulted from various policies solved using NLP 

technique is shown in Figure 7.8.  From the figure, it is observed that there is wide variation 

in releases for different scenarios.  In general, the wet scenario has releases more than other 

scenarios.  Figure 7.8(a) shows the releases to powerhouses for Policy 1.  For Policy 1, only 

the wet scenario has resulted in releases to PH IV for few months.  This shows that when no 

binding constraints are considered all the releases are oriented towards the power production.  

Figure 7.8(b) depicts releases made by Policy 2 for different scenarios.  In Policy, both the 

wet scenario and dry scenario resulted in releases to PH IV for few months, since the annual 

irrigation demand is considered.  It is to be noted that the total releases in these few months is 

equal to the total annual demand.  On the other hand, this has reduced the releases to PH I.  

The releases made by Policy 3 under different scenario are given in Figure 7.8(c).  The Policy 

3 which considers the monthly irrigation demand constraint has resulted in releases to PH IV 

as per the irrigation demand.  All the three scenarios have resulted in irrigation releases in 

Policy 3.  From Figure 7.8(d), it is observed that the Policy 4 has resulted almost similar 

releases for all scenarios to PH I in most of the time period.  Compared to other policies, the 

releases are less in Policy 4 due to Western side release constraint.  The Policy 4 also has 

released irrigation demands as per the requirement for all three scenarios. 

7.6.4 End of Month Storage Levels 

The resulted end of month Koyna reservoir storage for various operating policies is given in 

Figure 7.9.  From Figure 7.9, it can be seen that the end storage curve of Koyna reservoir 

follows a similar trend for all policies.  Only the wet inflow scenario reached the maximum 

storage in all policies, while the normal inflow scenario reached the maximum storage in 

Policy 4 due to the restriction in releases and storing the water in the reservoir.  Figure 7.9(a) 

shows the resulting storage levels for Policy 1 and indicates that the available inflow and 

storage is fully utilized for power production, since there are no binding constraints on 

releases.  Only the wet inflow scenario has reached the maximum capacity of the reservoir for 

Policy 1 in spite of high power production.  The resulting storage levels for Policy 2 and 3 are 

shown in Figure 7.9(b) and Figure 7.9(c) respectively.  Both the policies have similar storage 

levels.  A minor difference seen is due to the irrigation release during all the months in Policy 

3.   



 

 
 

2
2

8 

 

Figure 7.8. Monthly releases to different powerhouses of KHEP resulted from NLP technique
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The end month storage levels for Policy 4 is shown in Figure 7.9(d), the wet and normal 

inflow have resulted in maximum storage leading to overflow from the reservoir, since the 

releases are restricted as per the Tribunal limits.  The variation in storage levels for dry inflow 

scenario is the same as that of the other policies.  Due to the restriction in releases, Policy 4 

resulted in higher storage levels leading to lower power production.  This indicates that policy 

4 not only produces less power, it is also under utilizing the power potential created.  Even 

though, the wet scenario of Policy 1 and Policy 2 reached the maximum storage level, they 

have not resulted overflow.  However, the wet scenario of Policy 3 and Policy 4 have resulted 

277.49 × 106 m3 and 1020.28 × 106 m3 overflow during the month of August from Koyna 

reservoir.  The operations of Kolkewadi reservoir is mainly depends on tail water from PH I 

and PH III of Koyna reservoir.  The resulted end of month storage curves of Kolkewadi 

reservoir is shown in Figure 7.10.  It is observed that the storage rule curves are same for all 

the policies and also for all the three inflow scenarios.  Thus, all inflows are completely 

utilized for power production in Kolkewadi reservoir with any overflow. 

 

Figure 7.9. Resulted storage curves for various scenarios for Koyna reservoir using NLP 

technique 
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Figure 7.10. Resulted storage curves for Kolkewadi reservoir using NLP technique 

7.6.5 Simulation of NLP results 

Based on the above analysis, the Policy 3 is selected as the best and viable optimal result, 

since it has satisfied the monthly irrigation demand and also produced considerable power 

production compared to Policy 4.  The performance of the optimal releases of Policy 3 

obtained from wet inflow (referred as Scenario 1), normal inflow (referred as Scenario 2) and 

dry inflow (referred as Scenario 3) are assessed using a simulation model for 49 years of 

observed inflow.  The performance of the optimal policies were evaluated using the criteria 

reported by Jothiprakash and Shanthi (2009).     Table 7.4 shows the performance of the 

optimal Policy 3 for longer period.  The MFID gives the number of months the deficit 

occurred to the total simulated months.  The table shows the Scenario 1 has resulted in deficit 

irrigation in 45 months out of total simulated 588 months.  The annual average irrigation 

deficit is also higher for Scenario 1.  The Scenario 2 has resulted deficit irrigation release in 

10 months.  The Scenario 3 has not resulted in any irrigation deficit and has released as per 

the demand for all the time periods.   

Table 7.4. Performance analyses of Policy 3 of NLP model 

Scenario MFID AFID AAID (106 m3) PAID (%) 

Scenario 1 45/588 16/49 74.97 8.83 

Scenario 2 10/588 7/49 18.60 2.19 

Scenario 3 0/588 0/49 0.00 0.00 



 

231 
 

The optimal releases of Scenario 1 are higher than Scenario 2 and 3 as per the results of the 

optimization model.  Hence, the simulation results of Scenario 1 encountered higher MFID, 

MAID, AFID, AAID and PAID than Scenario 2 and 3.  The volume of monthly average 

irrigation deficit for all the scenarios is given in Figure 7.11.  From the figure, it can be seen 

that the Scenario 1 has resulted in irrigation deficit and the Scenario 2 for few months at the 

end of the time period.  However, the Scenario 3 has not resulted in any irrigation deficit.  It is 

also seen that the deficits occurred mostly at the end of the year.  The result shows that 

irrespective of the inflow, the Policy 3 performs very well for longer runs with a maximum 

average irrigation deficit of 8.8% over 49 years.   

 

Figure 7.11. Monthly average irrigation deficit in KHEP of Policy 3 for different 

scenarios 

 

The volume reliability of monthly irrigation release is given in Figure 7.12.  From the figure, 

it is observed that all the scenarios have more than 75% reliability.  Even though the Scenario 

1 has resulted in deficit in few months at the end of the season, it has released more than 75% 

of the demand and similarly the Scenario 2 has released more than 80% of the demand in 

deficit months.  The overall volume reliability is more than 90% for all the scenarios, which 

shows that the optimal results of Policy 3 are highly reliable.  This study shows that the power 

production can be increased by slightly relaxing the power releases without compromising the 

irrigation releases. 
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Figure 7.12. Volume reliability of monthly irrigation releases of Policy 3 for various 

scenarios 

7.7 Optimization using Hybrid Evolutionary Algorithms 

In order to overcome the drawbacks of conventional optimization techniques, the evolutionary 

algorithm based soft computing techniques is also applied in this study.  The operations of 

KHEP reservoirs are optimized using chaotic evolutionary optimization algorithms.  The 

genetic algorithm and differential evolution algorithm are used as a base optimization 

algorithm and are coupled with chaos technique to enhance the search by generating better 

initial population and other genetic operations.  The chaos technique is introduced in 

generating initial population, crossover and mutation.  All these four policies are evaluated 

with 75% dependable inflow using hybrid chaotic differential evolution (HCDE), chaotic 

genetic algorithm (HCGA), differential evolution (DE) algorithm and genetic algorithm (GA) 

techniques and the results are inter-compared.  Further, the performances of the optimal 

results of best scenario are assessed using a simulation model for estimating the irrigation 

deficits in longer run, since agriculture is the major sector.   
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7.7.1 Hybrid Chaotic Genetic Algorithm  

The Hybrid Chaotic Genetic Algorithm (HCGA) uses chaotic initial population generation, 

tournament selection, chaotic simulated binary crossover and chaotic mutation.  The chaotic 

technique is introduced in simulated binary crossover to enhance the search in GA and in 

mutation to keep the population diversity.  It is reported that the crossover probability should 

be selected such that it should not create a complete copy of parent nor completely different 

from the parents (Goldberg, 1989).  Hence, the sensitivity analyses on crossover probability 

were carried out for HCGA by varying it from 0.50 to 0.95 with an increment of 0.05.  The 

results showed that the power production was higher for a crossover probability of 0.80.  The 

objective function fitness value, annual power production increases with the increase in 

crossover probability up to 0.8 and then decreases.  This may be due to the reason that the 

offsprings are different from the parents at higher crossover probability and hence, it losses 

the genetic material.  Jothiprakash and Arunkumar (2013) reported that a crossover 

probability of 0.75 resulted better power production for Koyna reservoir alone when modelled 

as a single reservoir system,.  This shows that the increase in number of variables for a multi-

reservoir system can be handled by increasing the probability of crossover (Jothiprakash et 

al., 2011b).   The mutation probability is fixed as the ratio of the number of variable (1/n) as 

suggested by Deb (Deb, 2001).  The elitism is applied to preserve the best strings in the 

population such that it is not lost during the genetic operations.  To have a true comparison 

between HCGA and GA, the same crossover probability and mutation probability are used in 

simple GA.  The other GA parameters used for various scenarios are given in Table 7.5. 

 

Table 7.5. HCGA and GA parameter used for hydropower multi-reservoir system 

Parameters 
Policies 
1 2 3 4 

Crossover Probability 0.80 0.80 0.80 0.80 
Mutation Probability 0.021 0.021 0.021 0.021 
Population size 250 250 250 250 
Maximum generations 1000 1000 1000 1000 
Elitism 0.1 0.1 0.1 0.1 
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7.7.2 Hybrid Chaotic Differential Evolution Algorithm 

Jothiprakash and Arunkumar (2013) reported that the DE/best/1/exp strategy resulted best 

optimal results for a single reservoir optimization.  Hence, in the present study also, the 

strategy ‘HCDE/best/1/exp’ is used for all the policies of both HCDE and simple DE, since 

the best strings are used for mutation.  The scale factor ‘F’ and crossover factor ‘CR’ are the 

two important factors that control global search in DE.  An optimal scale factor should be 

such that it should not generate the parent population again nor completely different from 

parents.  The scale factor should also ensure the diversity in the population and also retain the 

genetic information from the parent population.  Price et al. (2005) reported that a scale factor 

(F) less than 0.50 is reasonable to maintain the diversity in the population and to have parent 

genetic information.  Similarly, the crossover is also a significant factor, which controls the 

global search by generating new population.  Price et al. (2005) reported that the CR values 

between 0.50 and 1 is optimal for crossover in DE.  Therefore, a sensitivity analyses has been 

performed by varying CR and F in the above specified range with an increment of 0.10.  From 

the figure it is found that F of 0.3 and CR value 0.6 resulted in better power production.  It is 

also found that further increase in the CR value decreases the power production for all the 

scale factor.  In addition, the power production is less for very low (0.10) scale factor and also 

for high (0.5) scale factor.  A scale factor (F) of 0.30 and CR value of 0.60 resulted in a better 

power production for the single reservoir system also (Jothiprakash and Arunkumar, 2013). 

The other DE parameters used for various scenarios are given in Table 7.6. 

 
 

Table 7.6. HCDE and DE parameters used for different policies of hydropower 

optimization 

S.No Parameters 
Policies 
1 2 3 4 

1 F 0.30 0.30 0.30 0.30 
2 CR 0.60 0.60 0.60 0.60 
3 Population 250 250 250 250 
4 Generation 1000 1000 1000 1000 
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7.7.3 Computational Efficiency of the Hybrid Search Algorithms 

All the algorithms used in the study are evaluated up to 1000 generation with a population 

size of 250.  The constraints in the optimization are handled by penalty function approach for 

all the techniques applied.  Based on the significance of the constraint, different penalties are 

assumed and heavy penalties are imposed on fitness function upon violation.  All the four 

policies are run repeatedly for several times for all the techniques and only the best optimal 

solution resulted from each technique is reported.  The convergence of these techniques to 

arrive optimal solution over the generation is traced and is given in Figure 7.13.  From Figure 

7.13, it can be observed that the rate of convergence to optimal solution by HCGA and HCDE 

is faster than simple GA and DE for all the policies studied.  Further, the HCGA and HCDE 

with chaotic initial population have higher fitness value than simple GA and DE for all the 

four policies.  Hence, it may be concluded that hybrid chaotic evolutionary algorithm 

converges quickly to the global optimal solution.  It is also noted that for policy 3 and policy 

4, all the techniques with the tribunal binding constraints on releases have resulted in sub-

optimal solution for first few generations.  It is found that, imposing heavy penalties on the 

fitness function leads to negative fitness value and resulted in sub-optimal solution.  Over the 

generation, all the algorithms reached the optimal solution without violating the constraints.  

It is very clearly seen that with hard binding constraints, the HCGA and HCDE have satisfied 

the constraints and reached the optimal solution in lesser generations than simple GA and DE.  

This also shows that when binding constraints are imposed strictly, the simple GA and DE 

take more generations for convergence.  On the other hand, the HCGA and HCDE with better 

initial population with enhanced search converged quickly to the optimal solution.   
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Figure 7.13. Convergence of evolutionary algorithms for different policies of KHEP
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7.7.4 Annual Power Production 

The annual power production resulted from various techniques for different policies are given 

in Table 7.1.  It is observed that all the techniques have resulted in more or less same quantity 

of power production in their respective policies however there is large variation from one 

policy to the other policy.  These variations in power production among the policies are due to 

constraint on releases.  In order to assess the possible power production potential of whole 

KHEP, in Policy 1, no restrictions on releases to the powerhouses are considered.  Under this 

condition, a maximum of 5195.39 × 106 kWh is generated by HCDE model.  The HCGA has 

resulted slightly lesser power production than HCDE, however both are higher than simple 

DE and GA models.  This shows that the chaotic algorithm coupled with general optimization 

algorithm has enhanced the search with better initial population.  All the techniques have 

resulted in very less releases for Policy 1 on Eastern side for irrigation, since no binding 

constraint on irrigation is considered.  In order to have irrigation releases, the annual irrigation 

release constraint is considered in Policy 2 [Eq. 5.14].  All the models are optimized with this 

additional constraint.  From the results, it observed that all the models have resulted in 

irrigation releases equal to total annual irrigation demand.  This has considerably reduced the 

total annual power production, since the releases to the powerhouses on the Western side have 

reduced significantly.  Thus, there is a large variation in power production among the 

powerhouses for the same quantity of discharge.   

Even though the total annual irrigation demand is achieved in Policy 2, the month wise 

irrigation demands are not satisfied.  Hence in Policy 3, all the models are forced to release 

for irrigation every month by enforcing the monthly irrigation demand constraint.  This hard 

binding constraint took few more generations for converging to a global optimal solution.  

The variation in releases within the months has slightly reduced the power production in 

Policy 3 compared to Policy 2.  However, all the four models have satisfied the monthly 

irrigation demands as per the requirement.  Thus, in the Policy 3 irrigation releases are given 

higher priority, since agriculture is the primary occupation and also leads to downstream flow.  

In Policy 4, the present situation is reproduced by restricting the releases for power production 

in the Western side considering the all the constraints.  This has resulted in further reduction 

in power production with decreased release to the major powerhouses in the Western side.  

From the table it can also be observed that there is no much variation among models for this 
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Policy 4.  For all the four policies, HCDE resulted in slightly higher hydropower generation 

compared to other techniques.  On comparing with the Koyna reservoir studied by 

Jothiprakash and Arunkumar (2013) as a single reservoir system, there is a 20% increase in 

annual power production in all the policies for all the techniques.  This shows that even 

though Kolkewadi is very small reservoir compared to Koyna, it terms of power production it 

contributes significantly to the KHEP, since it has the second largest powerhouse in the 

system with a capacity of 320 MW. 

Table 7.7. Resulted annual power (106 kWh) production from various techniques 

Policy HCDE HCGA DE GA 
Policy 1 5195.39 5193.08 5192.44 5191.54 
Policy 2 3980.27 3977.79 3976.23 3975.56 
Policy 3 3950.93 3949.38 3947.95 3946.84 
Policy 4 3226.60 3225.71 3224.89 3224.23 

7.7.5 Resulted Monthly Releases 

The monthly releases to the powerhouses for various policies from different optimization 

techniques are shown in Figure 7.14.  From the figure, it is observed that all the techniques 

have resulted more releases to PH II than other powerhouses.  This may be due to the reason 

that the PH II is having highest capacity in system and the net head for PH II is higher than 

the other powerhouses.  Hence, all the models have resulted more releases to PH II.  

However, there is a large variation in releases to the powerhouses for every month among the 

models.  Figure 7.14(a) shows the releases to powerhouses for Policy 1.  For Policy 1, all the 

models have resulted no releases to PH IV, which is operated through irrigation release.  This 

shows that when no binding constraints are considered all the releases are oriented towards 

the power production.  The Policy 2, shown in Figure 7.14(b) depicts that the PH IV is having 

releases when annual irrigation demand is considered.  On the other hand, this has reduced the 

releases to PH I subsequently.  Even though the total annual irrigation releases are satisfied, 

the releases are not as per the monthly irrigation requirement in Policy 2.  Few months have 

higher releases and few months have very less releases for all the models.  Hence, to have the 

monthly irrigation releases as per the requirement, in Policy 3, the monthly irrigation 

requirement constraint is considered.  All the models have resulted in releases as per the 

irrigation requirement every month as shown in Figure 7.14(c).  In the last Policy 4, the 

releases to the powerhouses are further reduced since the binding constraint on releases 
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towards West and East are considered.  From Figure 7.14(d), it is observed that the all the 

models have resulted almost similar releases to PH I and maximum release to PH II.  These 

results show that the KHEP is under generating the hydropower beyond its capability due to 

hard bound constraint.  If the constraint on Westward flow is relaxed by 10%, it is found that 

more than 14% of hydropower could be generated.  Hence, based on the study it may be 

concluded that Policy 3 studied in the present study may be a better alternative policy to the 

existing policy in KHEP. 

7.7.6 End of Month Storage Levels 

The end of month storage levels of Koyna reservoir resulted from different techniques for 

various policies are shown in Figure 7.15.  From the figure, it is observed that all other 

policies have resulted in similar storage curves, except Policy 4.  In order to achieve the 

steady state policy, the storage in the reservoir at the end of the season is forced to meet the 

storage at the beginning of the season.  Hence, for all the policies the final storage is equal to 

the initial storage, except for Policy 4.  This is not possible in Policy 4, since the restriction on 

releases increased the storage in the reservoir and resulted in higher storage at the end of the 

season, thus violating the steady state policy.  Hence, in order to maintain the steady state 

policy and to increase the power production by satisfying the irrigation demands, the available 

storage in the reservoir at the end of the season may be used for power production in the 

Western side (Policy 3).  This also shows that under fully restricted release (Policy 4), the 

reservoir behaves as a surplus system, leading to underutilization of the potential created.  

This study shows that the available storage can be utilized for power production in the 

Western side by relaxing the restriction on releases (Policy 3), at the same time satisfying the 

irrigation demand in Eastern side.   

The Kolkewadi reservoir operations mainly depends on the tail water releases from PH I and 

PH II, which in turn receives from Koyna reservoir releases.  Also, the storage at the 

Kolkewadi is always maintained at maximum level for high head.  The resulted end of month 

storage levels of Kolkewadi reservoir is given in Figure 7.16.  The initial storage during the 

start of the season corresponds to the 75% dependable inflow year initial storage (June month) 

observed in the reservoir.  However, this initial storage may not occur every year in reality.  

Hence to test the performance of the optimal results obtained for 75% dependable inflow, the 

best optimal results arrived through Policy 3 are further simulated for longer period.   
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Figure 7.14. Monthly releases to different powerhouses of KHEP resulted from various techniques
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Figure 7.15. Resulted end storage curves of Koyna reservoir for various policies using 

evolutionary algorithms 

 

 

Figure 7.16. Resulted storage curves for various policies for Kolkewadi reservoir using 

evolutionary algorithms 
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7.7.7 Simulation of Optimal Releases 

The Policy 3 optimized through HCDE algorithm is selected as the best optimal policy, since 

it has satisfied the monthly irrigation demand and also produced considerable power 

production compared to Policy 4.  The irrigation performance is assessed for longer run using 

a simulation model.  The performance has been assessed through a simulation model using 49 

years of observed monthly inflow data.  The performances indices such as the MFID, MAID, 

AFID and PMID reported by Jothiprakash and Shanthi (2009) is used.  The simulation 

analysis shows that the model encountered irrigation deficit only in 8 months out of total 

simulated 588 months.  These 8 months occurred in 6 years at the end of the season where 

inflows during those years are very less.  The monthly average irrigation deficit resulted from 

the simulation model is given in Figure 7.17.  The deficit occurred mostly at the end of the 

season, when there is no rainfall and the reservoir is to be operated with the available storage.  

From the figure, it is also observed that the total irrigation deficit is around 12% out of which 

8% deficit occurred in May (end of the season).  The average annual irrigation deficit is about 

12.63 × 106 m3, which is very meagre when compared to the storage in the Koyna dam.  

These results show that the Policy 3 satisfactorily meets the irrigation requirements for all the 

time period and performed better for longer run also. 

 

Figure 7.17. Resulted monthly average irrigation deficits in KHEP for Policy 3 in longer 

run 
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7.8 Closure 

The performance of the evolutionary algorithm coupled with chaos for single objective 

optimization is tested by applying it to a complex multi-reservoir system, namely Koyna 

Hydro-Electric Project.  The KHEP has four powerhouses, among which three are in the 

Western side and one is at the Eastern side.  The irrigation releases are made through the 

powerhouse at the Eastern side by making the power production incidental.  The complexity 

of the system is that the power releases and irrigation releases are in the opposite direction 

and cannot be complemented due to the topology.  Hence, there is a need to optimize the 

operation of KHEP such that the power production and irrigation demands are met 

satisfactorily.  

Initially, the behaviour of the KHEP is assessed using a monthly time step simulation model 

for various cases based on duration of operation under unconstrained scenario and constrained 

scenarios.  From the simulation results, it is observed that the power production can be 

increased up to 12% for 12% increase in releases to the Western side powerhouses for 4 hr 

operation in the unconstrained scenario.  The reliability indices shows that the system is more 

reliable for case 1 (4 hr operation of powerhouses) for the scenarios studied.  The high 

resilience and low vulnerability indices show that the power production is more stable and 

continuous for case 1 in unconstrained scenario.   

An optimization model has been developed with the objective of maximizing the hydropower 

production of KHEP.  In this model, irrigation demands are given higher priority by making it 

as a separate constraint.  The developed model is solved for four different operating policies 

using both conventional NLP and evolutionary algorithm techniques.  In the conventional 

NLP technique, the optimization model is solved for three different inflow scenarios namely, 

wet, normal and dry inflow scenarios.  On comparing the different policies, it is found that the 

power production can be increased upon by relaxing the release constraint slightly.  Policy 3 

shows an increment of 47 and 22% in power production for wet and normal inflow scenario 

satisfying the monthly irrigation demands compared to Policy 4.  The monthly irrigation 

release has also slightly reduced the power production for Policy 2 and 3.  On evaluating the 

performance of the Policy 3 using a simulation model, the results shows that the optimal 

releases are highly reliable on longer run. 
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The optimization model with same policies are again solved with evolutionary algorithms 

coupled with chaos.  The chaotic technique is combined with the population based search 

algorithms namely genetic algorithm and differential evolution algorithm to enhance the 

global optimal search.  On comparing with simple genetic algorithm and differential evolution 

algorithm, it is found that hybrid chaotic differential evolution algorithm and hybrid chaotic 

genetic algorithm resulted better.  Among four policies assessed, the Policy 1 has resulted in 

maximum power production of 5195.39 × 106 kWh.  However, this Policy 1 has not resulted 

in irrigation release.  The Policy 3, which has resulted in irrigation releases as per the monthly 

demand as well as produced considerable hydropower, is found to be a viable option.  Further, 

the performances of Policy 3 are evaluated using a simulation model.  The simulation results 

of Policy 3 for longer time period show that the model satisfies the irrigation demand for most 

of the month and the deficit is very less.   

The comparison of annual power production and annual releases resulted from different 

techniques for various polices are given in Table 7.8.  On comparing the results, it found that 

the power production is slightly higher in HCDE.  It is also found that the total releases vary 

in both NLP and HCDE techniques.  In Policy 1, HCDE has resulted in higher release and in 

Policy 2 and 3, NLP has resulted in higher release.  For Policy 4, both the techniques has 

resulted almost equal releases.  However, HCDE has produced slightly more hydropower than 

NLP for all the policies.  This may be due to the variation in monthly storage levels.  There is 

a better variation in the end of month storage levels between HCDE policy and NLP policy.  

This indicates that soft computing techniques have resulted in a better optimal solution.  Thus, 

the present study shows that the chaotic algorithm with general optimizer helped to achieve 

better global optimal solution in lesser number of generations compared to simple 

optimization techniques.  

Table 7.8. Comparison of annual power production annual releases resulted from NLP 

and HCDE techniques 

Policy 

Power Production (106 kWh) Releases (106 m3) 

HCDE NLP HCDE NLP 

Policy 1 5195.39 5190.45 6551.60 6547.46 
Policy 2 3980.27 3974.29 5725.21 5736.13 
Policy 3 3950.93 3945.82 5693.83 5703.67 
Policy 4 3226.60 3223.37 4765.18 4765.08 

 



 

 
 

Chapter 8 

Summary and Conclusions 

8.1 Summary 

Water is one of the most essential natural resources not only for the human survival but also 

for the socio-economic development of a country.  The wide variation in its availability over 

space and time has caused concern to use it efficiently and effectively.  The surface water 

reservoirs play prominent role in solving the problem of spatial and temporal variation of 

water availability to some extent.  It also serves various purposes such as irrigation, 

hydropower, flood control, industrial and domestic water supply, recreation, etc.  Among 

these purposes, irrigated agriculture is the largest consumer of water and has high significance 

in India, since majority of the people depends on it.  The varying crop water requirement for 

different crops under multiple canals necessitated the planners to arrive at an optimal crop 

planning for efficient, effective and economic operation of an irrigation system.  Also, some 

reservoirs are having more command area but could not cater the irrigation demand on its 

own.  In such cases, water will be shared or transferred within the basin from the upstream 

reservoirs to cater the demands at the downstream reservoir.   

Another important purpose of impounded water in surface water reservoir is hydropower 

production.  In India, many reservoirs have hydropower plants, but most of them are 

incidental, where the power production is through irrigation releases.  Thus, the hydropower 

releases are termed as non-consumptive, since the water can be used for some other purpose 
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after power generation, mostly for irrigation.  However, there are few reservoirs specially 

built for hydropower production, where the hydropower and irrigation releases are in the 

opposite direction.  This calls for an optimal planning and operation of reservoirs for efficient 

and effective agricultural and hydropower production, considering the social concerns.   

Over the decades, several conventional optimization techniques had been developed and 

applied for optimizing reservoir operation.  The conventional techniques have their own 

merits and demerits.  To overcome the drawbacks of conventional techniques, recently the 

evolutionary algorithm (EA) based soft computing techniques are widely used in optimizing 

the water resources systems.  The EA that works on principle of natural genetics ‘survival of 

the fittest’ is genetic algorithm (GA) and differential evolution (DE) algorithm.  These 

techniques start their search from the initial population of possible solutions that are randomly 

generated to attain the global optimal solution over the generation.  However, the simple EAs 

are slower in convergence and may results in sub-optimal solutions for complex problems 

having hardbound constraints.  In order to improve the search of optimal solution and for 

faster convergence, recently chaos technique is being used along with other optimization 

algorithms.  In the present study, the chaos algorithm is coupled with EAs such as GA and DE 

algorithm and applied for optimizing multi-reservoir operations using single and multi-

objective approaches.   

From the literature survey, it is found that mostly LP, NLP and DP techniques were used in 

optimizing reservoir operation, especially for single objective optimization.  These techniques 

were either solved deterministically or stochastically.  MOFLP has been most widely used for 

multi-objective optimization, especially in deriving optimal crop planning.  However, studies 

on application of MOFLP in solving multi-objective multi-reservoir optimal crop planning 

model were very scanty.  Among the EAs, GA had been frequently used for single objective 

optimization and NSGA-II for multi-objective optimization of reservoir systems.  However, 

most of these studies pertain to single reservoir system.  Studies on multi-objective multi-

reservoir systems using EAs are very less, especially for Indian scenario.  Few studies were 

found on application of chaotic evolutionary algorithm for reservoir optimization.  The chaos 

sequences are mostly used only in generating initial population and are for single objective 

single reservoir optimization.  Studies on application of chaotic evolutionary algorithm for 

multi-objective multi-reservoir system are not reported.  Hence, in the present study an 
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attempt is made to use chaos sequence in every step of evolutionary algorithms and applied 

for both single and multi-objective optimization of multi-reservoir systems. 

The Koyna Hydro Eclectic Project (KHEP) is chosen for the single objective optimization of 

a multi-reservoir system using EAs coupled with chaos.  It consists of two reservoirs namely, 

Koyna and Kolkewadi reservoirs.  In KHEP, the major powerhouses are in the Western side 

and the irrigation releases are on the Eastern side of Koyna reservoir.  Thus, the releases to 

major powerhouses and irrigation are in the opposite direction and make the operation of the 

system very complex, which necessitates the optimal utilization of available water.  The 

KHEP is optimized for maximizing the hydropower production considering the irrigation 

releases as constraints.  Initially, a simulation model is developed to study the behaviour of 

the system.  Then, the hydropower optimization model is developed with the objective of 

maximizing the hydropower production.  The model is solved using both conventional and 

soft computing techniques.  Finally, the optimal results obtained among various techniques 

are further simulated for longer period to evaluate the performance of the optimal policy. 

The Kukadi Irrigation Project (KIP) is selected for multi-objective optimization of a multi-

reservoir system using multi-objective evolutionary algorithms (MOEA) coupled with chaos.  

It is one of the major irrigation projects in Maharashtra comprising of five dams namely, 

Dimbhe, Wadaj, Manikdoh, Pimpalgaon Joge and Yedgaon.  Dimbhe, Wadaj, Manikdoh and 

Pimpalgaon are the upstream reservoirs in parallel.  Yedgaon is at the downstream of these 

reservoirs and is in series with all the reservoirs.  Almost 60% of the cultivable area in the 

KIP is irrigated through Kukadi left bank canal (KLBC) from Yedgaon reservoir.  However, 

the water available in Yedgaon reservoir is very minimal and is not sufficient to cater the 

irrigation demands.  Therefore, water is transferred from all the upstream reservoirs to the 

Yedgaon reservoir through canals and rivers.  This makes the operation of the system 

complex, since both the temporal and spatial water transfer is not optimal.  Hence, a 

simulation model is developed to study the irrigation releases and the water transfer in the 

system.  Then, the multi-reservoir crop planning model is developed with the objective of 

maximizing the net benefits and crop production.  Initially, each objective is solved using 

crisp LP model.  From the results of LP model, the MOFLP model is developed considering 

both the objectives as fuzzy in nature.  The same multi-objective problem is then solved using 

MOEAs coupled with chaos.  Finally, the best optimal result obtained from MOEAs is 

simulated to evaluate the performance of the optimal policy over the period of time. 
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8.2 Conclusions 

In general, this study shows that the evolutionary algorithms coupled with chaos can be used 

for optimizing complex water resources systems having hard bound constraints.  It is also 

found that the chaos algorithm has enriched the search of global optimal solution and 

converged quickly.  It is found that solving multi-objective evolutionary optimization 

algorithm for longer generation results in very close global optimal solutions with very less 

variation in Pareto optimal solutions.  It is observed that the hard bound constraints are not 

satisfied for less number of generations and the simple EAs resulted in sub-optimal solutions.  

The specific conclusions emanated from the present research work are as follows: 

8.2.1 Multi-Objective Optimization for Optimal Crop Planning 

The hybrid chaotic evolutionary algorithms developed for single objective optimization are 

suitably modified and applied to a large scale multi-objective multi-reservoir irrigation 

system.  The specific conclusions arrived from this study is listed below: 

1. The simulation models are very much useful in assessing the significance of individual 

reservoirs and their capability in satisfying their own demand and also their share in 

intra basin water transfer.  The simulation of multi-reservoir crop planning model 

based on SOP showed that the Manikdoh and Yedgaon reservoir are not performing 

well in meeting the irrigation demand on its own.  The reliability index for irrigation 

releases from these two reservoirs is 0.75 and 0.70, respectively.  The Yedgaon 

reservoir has resulted in high vulnerability of 117.53 × 106 m3 for the irrigation 

releases. 

2. The simulation results also showed that the three upstream reservoirs namely, Dimbhe, 

Wadaj and Pimpalgaon have satisfactorily succeeded in water transfer to Yedgaon 

reservoir.  However, Manikdoh reservoir failed to release the water at appropriate time 

to Yedgaon reservoir indicated that the releases are not optimal.  The time reliability 

of water transfer for Manikdoh reservoir only 0.59 with a maximum vulnerability of 

114.35 × 106 m3. 

3. The MOFLP is found to be one of the useful models in deriving optimal cropping 

pattern for multi-objective multi-reservoir system.  The results give first hand 

information on optimal cropping pattern.  The MOFLP optimal crop planning model 
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developed with the objective of maximizing the net benefits and crop production 

resulted a satisfaction level of 0.46 with an irrigation intensity of 102.18% for the 

integrated operation of KIP multi-reservoir system.   

4. The total net benefit obtained from the system using MOFLP is Rs. 1909.92 Millions 

($31.75 Millions) and total crop production of 1191.30 thousand tonnes.  The MOFLP 

model has resulted a crop area of 86429.31 ha during Kharif and 62802.79 ha during 

Rabi season.  On comparing with crisp LP model, the results of MOFLP are slightly 

less due to fuzzification on achieving the optimal trade-off between the objectives.  

5. The sensitivity analyses of crossover probability over multi-objective optimization 

using CNSGA-II showed the objective values are better for a probability of 0.85.  

Similarly, the sensitivity analyses on scale factor (F) and crossover factor (CR) on 

multi-objective optimization using CMODE depicted that the net benefits and crop 

production are better for 0.20 and 0.90, respectively.   

6. Among different MOEA techniques used, the CMODE has resulted in higher net 

benefits of Rs. 1921.77 Million ($ 31.96 Millions) and crop production of 1201.55 

thousand tonnes for the multi-reservoir system.  A crop area of 88678.46 ha during 

Kharif season and 66562.98 ha during Rabi season with an irrigation intensity of 

106.29% is obtained from CMODE.  The total crop area resulted by CMODE is 4 % 

(6009.34 ha) more than MOFLP.  However, the total releases are only 0.65% (5.57 × 

106 m3) higher than MOFLP, indicating the CMODE achieved better optimal results 

than MOFLP by utilizing the available water efficiently. 

7. The total water transfer resulted from CMODE is 26.46 × 106 m3 higher than MOFLP 

model.  In addition, CMODE has resulted in water transfer from all the reservoirs of 

KIP during most of the months.  This has resulted in higher crop area under Yedgaon 

reservoir in CMODE model leading to higher net benefits and crop production for the 

same input.  Thus, CMODE has resulted in global optimal water transfer both spatially 

and temporally compared to MOFLP model.  

8. The simulation of optimal policies of CMODE showed that the policies performed 

very well for longer period.  All the canals in the system resulted reliabilities more 

than 0.95 indicating the optimal policy performed very well over the period of time.  

Similarly, the reliability of water transfer is also more than 0.94 for all the reservoirs 

in the system. 
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9. This study shows that the chaos can be effectively coupled with multi-objective 

evolutionary algorithms for the multi-objective analysis of multi-reservoir systems. 

8.2.2 Single Objective Optimization for Hydropower Production 

1. In water resources system analysis, simulation model helps to ascertain the existing 

scenario for various operating conditions.  In the present study, the simulation of 

KHEP for hydropower production using SOP showed that the power production 

potential is higher than present condition.  It is also found that the power production 

can be increased to 12% for 12% increase in releases to the Western side 

powerhouses.   

2. The evaluation of simulation studies through performance indicators helps in 

identifying the important components of water resources system.   

a. In the present study on evaluating the duration of operation of hydropower plants 

revealed that 4 hr operation per day produces more sustainable (reliable) 

hydropower for both constrained and unconstrained policies.  However, 

unconstrained policy is the most advantageous in terms of utilization of the 

hydropower potential created.   

b. The high resilience and low vulnerability of 4 hr duration of operation of 

powerhouses depicts that the power production is more stable and continuous.   

3. The chaos with general optimization algorithm helped to achieve better global optimal 

solution in lesser number of generations compared to simple optimization techniques 

for complex water resources problems with hard bound constraints.  Introducing the 

chaos sequence in all the process of GA like initial population generation, crossover 

and mutation improved the search much better. 

4. The hybrid chaotic differential evolution algorithm and hybrid chaotic genetic 

algorithm resulted in a better power production than NLP model as well as from 

simple genetic algorithm and differential evolution algorithm models.   

5. In spite of various advantages, some of the parameters of EAs are need to be fixed 

using sensitivity analyses.  The sensitivity analyses on scale factor (F) and crossover 

factor (CR) over the single objective using HCDE revealed that the power production 

is better for 0.30 and of 0.60, respectively.  The sensitivity analyses on crossover 
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probability on single objective optimization in HCGA showed that the power 

production is high for 0.80.   

6. Among different techniques used, HCDE resulted in highest power production for all 

the four policies considered in the study.  These policies varied from the scenario of 

assessing full power production potential to present scenario of releases with tribunal 

constraint.  Among the four policies assessed, the Policy 1 has resulted in maximum 

power production of 5195.39 × 106 kWh, which shows the full potential of the KHEP 

system.  However, this Policy 1 has not resulted in irrigation release.   

7. The Policy 3 which considers both the monthly and annual irrigation constraints is 

found to be a viable option than the Policy 4, since Policy 3 has produced 3950.93 × 

106 kWh hydropower as well as resulted in irrigation releases as per the demand.  This 

is 22% more than the power produced by Policy 4. 

8. The Policy 3 is evaluated using a simulation model to study its performance in longer 

run.  The simulation results showed that the model satisfied the irrigation demand for 

most of the month (deficit occurred only in 8 months out of 588 simulated months).  

The average annual irrigation deficit is about 12.63 × 106 m3, which is very meagre 

when compared to the storage of the Koyna reservoir. 

8.3 Research Contribution 

The following are the research contributions: 

1. The chaos algorithm is coupled with the evolutionary optimization algorithms such as 

genetic algorithm and differential evolution algorithm.  The chaos is introduced in 

generating initial population, simulated binary crossover and random mutation in 

genetic algorithm.  In differential evolution algorithm, chaos is introduced in initial 

population generation.  The same is extended for multi-objective evolutionary 

algorithms. 

2. The developed algorithms are applied to two complex multi-reservoir systems using 

non-linear hydropower production function and complicated multi-reservoir water 

sharing crop planning. 
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8.4 Scope for Future Work 

The following are the scope for future work: 

1. The study may be extended to develop optimal operating policies for conjunctive use 

of surface and ground water for the same basin using multi-objective analysis. 

2. The derived optimal operating policies are in monthly time steps, which can be 

extended to weekly and daily time steps, especially for hydropower production. 

3. In this study, one dimensional logistic map method is used for generating the chaos 

sequence.  Other available methods can be used to generate chaos sequence and the 

results can be compared. 
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